2024 05 v.40 355-365
功能聚离子液体多孔膜的研究进展
基金项目(Foundation):
国家自然科学基金面上项目(基金号52373008);
天津市自然科学基金(基金号19JCYBJC17500)
邮箱(Email):
hongwang1104@nankai.edu.cn.;
DOI:
10.16026/j.cnki.iea.2024050355
中文作者单位:
南开大学化学学院高分子研究所;
摘要(Abstract):
聚电解质多孔膜具有带电荷的特性和丰富的孔结构,在膜科学领域有巨大的应用价值。聚离子液体是指由离子液体单体聚合生成的聚合物,兼具离子液体和聚合物的优良性能,是近年来发展迅速的一类新型功能聚电解质。相比传统聚电解质,聚离子液体具有可调节的亲疏水性和可设计的结构,这些功能特性赋予其在功能聚电解质(纳米)多孔膜领域良好的应用前景。文章综述了功能聚离子液体多孔膜的制备方法,重点阐述了聚离子液体多孔膜相关工作的最新研究进展及其在吸附/分离、传感驱动、能量转换和功能性涂层等方面的应用,并对该领域的未来发展方向进行了展望。
关键词(KeyWords):
聚电解质;聚离子液体;多孔膜
288 | 0 | 74 |
下载次数 | 被引频次 | 阅读次数 |
参考文献
1 Zhang W, Zhao Q, Yuan J. Porous polyelectrolytes:the interplay of charge and pores for new functionalities[J].Angewandte Chemie International Edition, 2018, 57(23):6754-6773.
2 Durmaz E N, Sahin S, Virga E, De Beer S, De Smet L C P M, De Vos W M. Polyelectrolytes as building blocks for next-generation membranes with advanced functionalities[J]. ACS Applied Polymer Materials, 2021, 3(9):4347-4374.
3 唐清泉,赵强.多孔聚电解质功能材料研究进展[J].高分子通报, 2018(6):85-95.
4 DuChanois R M, Heiranian M, Yang J, Porter C J, Li Q, Zhang X, Verduzco R, Elimelech M. Designing polymeric membranes with coordination chemistry for high-precision ion separations[J]. Science Advances, 2022, 8(9):eabm9436.
5 Gao D, Thangavel G, Lee J, Lv J, Li Y, Ciou J H, Xiong J, Park T, Lee P S. A supramolecular gel-elastomer system for soft iontronic adhesives[J]. Nature Communications, 2023, 14(1):1990.
6 Maan A M C, Hofman A H, De Vos W M, Kamperman M. Recent developments and practical feasibility of polymer-based antifouling coatings[J]. Advanced Functional Materials, 2020, 30(32):2000936.
7 Tang S, Gong J, Shi Y, Wen S, Zhao Q. Spontaneous water-on-water spreading of polyelectrolyte membranes inspired by skin formation[J]. Nature Communications, 2022, 13(1):3227.
8 Zhao Q, Dunlop J W C, Qiu X, Huang F, Zhang Z, Heyda J, Dzubiella J, Antonietti M, Yuan J. An instant multiresponsive porous polymer actuator driven by solvent molecule sorption[J]. Nature Communications, 2014, 5(1):4293.
9 Zhang Z, Wen L, Jiang L. Nanofluidics for osmotic energy conversion[J]. Nature Reviews Materials, 2021, 6(7):622-639.
10 Wang Y, Zanelotti C J, Wang X, Kerr R, Jin L, Kan W H, Dingemans T J, Forsyth M, Madsen L A. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways[J]. Nature Materials, 2021,20(9):1255-1263.
11 He Y, Cheng Y, Yang C, Guo C F. Creep-free polyelectrolyte elastomer for drift-free iontronic sensing[J]. Nature Materials, 2024, 23(8):1107-1114.
12 Kim H J, Chen B, Suo Z, Hayward R C. Ionoelastomer junctions between polymer networks of fixed anions and cations[J]. Science, 2020, 367(6479):773-776.
13 Qian W, Texter J, Yan F. Frontiers in poly(ionic liquid)s:syntheses and applications[J]. Chemical Society Reviews,2017, 46(4):1124-1159.
14 Kuhn H, M?bius D. Systems of monomolecular layers-assembling and physico-chemical behavior[J]. Angewandte Chemie International Edition in English, 1971, 10(9):620-637.
15 Decher G. Fuzzy nanoassemblies:toward layered polymeric multicomposites[J]. Science, 1997, 277(5330):1232-1237.
16 Zhang S Y, Zhuang Q, Zhang M, Wang H, Gao Z, Sun J K, Yuan J. Poly(ionic liquid)composites[J]. Chemical Society Reviews, 2020, 49(6):1726-1755.
17 Yuan J, Mecerreyes D, Antonietti M. Poly(ionic liquid)s:an update[J]. Progress in Polymer Science, 2013, 38(7):1009-1036.
18 Hu Y, Xu L, Wang L, Shao Y, Wang H. Functional poly(ionic liquid)porous membranes:from fabrications to advanced applications[J]. Chinese Journal of Chemistry. 2023, 41(2):225-236.
19 Srivastava S, Kotov N A. Composite layer-by-layer(LBL)assembly with inorganic nanoparticles and nanowires[J]. Accounts of Chemical Research, 2008, 41(12):1831-1841.
20 Borges J, Mano J F. Molecular interactions driving the layer-by-layer assembly of multilayers[J]. Chemical Reviews, 2014, 114(18):8883-8942.
21 W?gberg L, Erlandsson J. The use of layer-by-layer self-assembly and nanocellulose to prepare advanced functional materials[J]. Advanced Materials, 2021, 33(28):2001474.
22 Kim Y H, Park J, Yoo P J, Hammond P T. Selective assembly of colloidal particles on a nanostructured template coated with polyelectrolyte multilayers[J]. Advanced Materials, 2007, 19(24):4426-4430.
23 Yuan W, Weng G M, Lipton J, Li C M, Van Tassel P R, Taylor A D. Weak polyelectrolyte-based multilayers via layer-by-layer assembly:approaches, properties, and applications[J]. Advances in Colloid and Interface Science,2020, 282:102200.
24 Erwin A J, Xu W, He H, Matyjaszewski K, Tsukruk V V. Linear and star poly(ionic liquid)assemblies:surface monolayers and multilayers[J]. Langmuir, 2017, 33(13):3187-3199.
25 Zhou T, Lei Y, Zhang H, Zhang P, Yan C, Zheng Z, Chen Y, Yu Y. Visible-light photolabile, charge-convertible poly(ionic liquid)for light-degradable films and carbon-based electronics[J]. ACS Applied Materials&Interfaces,2016, 8(36):23431-23436.
26 Zuo T T, Liu K, Wei X Q, Hu S, Che Q T. Constructing lamellar low temperature anion exchange membranes based on polymerized ionic liquid and graphene oxide nanosheets[J]. Materials Today Chemistry, 2023, 31:101615.
27 Oss-Ronen L, Schmidt J, Abetz V, Radulescu A, Cohen Y, Talmon Y. Characterization of block copolymer selfassembly:from solution to nanoporous membranes[J]. Macromolecules, 2012, 45(24):9631-9642.
28 Dorin R M, Phillip W A, Sai H, Werner J, Elimelech M, Wiesner U. Designing block copolymer architectures for targeted membrane performance[J]. Polymer, 2014, 55(1):347-353.
29 Peinemann K V, Abetz V, Simon P F W. Asymmetric superstructure formed in a block copolymer via phase separation[J]. Nature Materials, 2007, 6(12):992-996.
30 Weber R L, Ye Y, Schmitt A L, Banik S M, Elabd Y A, Mahanthappa M K. Effect of nanoscale morphology on the conductivity of polymerized ionic liquid block copolymers[J]. Macromolecules, 2011, 44(14):5727-5735.
31 Peltekoff A J, Brixi S, Niskanen J, Lessard B H. Ionic liquid containing block copolymer dielectrics:designing for high-frequency capacitance, low-voltage operation, and fast switching speeds[J]. JACS Au, 2021, 1(7):1044-1056.
32 Guan Z, Wang B, Wang Y, Chen J, Bao C, Zhang Q. Iron-containing poly(ionic liquid)membranes:a heterogeneous Fenton reaction and enhanced anti-fouling ability[J]. Polymer Chemistry, 2022, 13(1):130-138.
33 Luo L, Lyu X, Tang Z, Shen Z, Fan X H. Thin-film self-assembly of block copolymers containing an azobenzenebased liquid crystalline polymer and a poly(ionic liquid)[J]. Macromolecules, 2020, 53(21):9619-9630.
34 Ma Y, Hu C, Yi G, Jiang Z, Su X, Liu Q, Lee J Y, Lee S Y, Lee Y M, Zhang Q. Durable multiblock poly(biphenyl alkylene)anion exchange membranes with microphase separation for hydrogen energy conversion[J]. Angewandte Chemie, 2023, 135(41):e202311509.
35 Zhao Q, Yin M, Zhang A P, Prescher S, Antonietti M, Yuan J. Hierarchically structured nanoporous poly(ionic liquid)membranes:facile preparation and application in fiber-optic p H sensing[J]. Journal of the American Chemical Society, 2013, 135(15):5549-5552.
36 T?uber K, Zhao Q, Antonietti M, Yuan J. Tuning the pore size in gradient poly(ionic liquid)membranes by small organic acids[J]. ACS Macro Letters, 2015, 4(1):39-42.
37 Jiang Z, Liu Y, Shao Y, Zhao P, Yuan J, Wang H. Fine tuning the hydrophobicity of counter-anions to tailor pore size in porous all-poly(ionic liquid)membranes[J]. Polymer International, 2019, 68(9):1566-1569.
38 Wei S, Xiao Y, Jiang H, Héraly F, Zhang L, Huang W, Yuan J, Lang M. Polypeptide-based vapor-responsive porous poly(ionic liquid)actuators:from reversible to unexpectedly irreversible actuation[J]. Materials Today Communications, 2023, 35:105878.
39 Hu Y, Teng Y, Sun Y, Liu P, Fu L, Yang L, Kong X Y, Zhao Q, Jiang L, Wen L. Bioinspired poly(ionic liquid)membrane for efficient salinity gradient energy harvesting:electrostatic crosslinking induced hierarchical nanoporous network[J]. Nano Energy, 2022, 97:107170.
40 Ni Y, Yin M, Dong S, Huang F, Zhao Q. A poly(ionic liquid)-pillar[5] arene honeycombed isoporous membrane for high performance Cu2+sensors[J]. Applied Surface Science, 2020, 500:144056.
41 Lin H, Gong J, Miao H, Guterman R, Song H, Zhao Q, Dunlop J W C, Yuan J. Flexible and actuating nanoporous poly(ionic liquid)-paper-based hybrid membranes[J]. ACS Applied Materials&Interfaces, 2017, 9(17):15148-15155.
42 Zhang Y J, Wu H, Tan L X, Wei Y, Ren J J, Li Y J, Yu X D, Sun J K. Conjugated poly(ionic liquid)-based nanoporous membrane for rapid moisture response[J]. Macromolecular Rapid Communications, 2023, 44(6):2200846.
43 Zhao Q, Lee D W, Ahn B K, Seo S, Kaufman Y, Israelachvili J N, Waite J H. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange[J]. Nature Materials, 2016, 15(4):407-412.
44 Fellinger T P, Thomas A, Yuan J, Antonietti M. 25th anniversary article:“cooking carbon with salt”:carbon materials and carbonaceous frameworks from ionic liquids and poly(ionic liquid)s[J]. Advanced Materials, 2013,25(41):5838-5855.
45 Yuan J, Giordano C, Antonietti M. Ionic liquid monomers and polymers as precursors of highly conductive,mesoporous, graphitic carbon nanostructures[J]. Chemistry of Materials, 2010, 22(17):5003-5012.
46 Wang H, Min S, Ma C, Liu Z, Zhang W, Wang Q, Li D, Li Y, Turner S, Han Y, Zhu H, Abou-Hamad E, Hedhili M N, Pan J, Yu W, Huang K W, Li L J, Yuan J, Antonietti M, Wu T. Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting[J]. Nature Communications, 2017, 8(1):13592.
47 Wang Y, Shao Y, Wang H, Yuan J. Advanced heteroatom-doped porous carbon membranes assisted by poly(ionic liquid)design and engineering[J]. Accounts of Materials Research, 2020, 1(1):16-29.
48 Shao Y, Jiang Z, Zhang Y, Wang T, Zhao P, Zhang Z, Yuan J, Wang H. All-poly(ionic liquid)membrane-derived porous carbon membranes:scalable synthesis and application for photothermal conversion in seawater desalination[J]. ACS Nano, 2018, 12(11):11704-11710.
49 Wang T, Wang Q, Wang Y, Da Y, Zhou W, Shao Y, Li D, Zhan S, Yuan J, Wang H. Atomically dispersed semimetallic selenium on porous carbon membrane as an electrode for hydrazine fuel cells[J]. Angewandte Chemie International Edition, 2019, 58(38):13466-13471.
50 Digby Z A, Yang M, Lteif S, Schlenoff J B. Salt resistance as a measure of the strength of polyelectrolyte complexation[J]. Macromolecules, 2022, 55(3):978-988.
51 Dong Z, Zhang C, Peng H, Gong J, Wang H, Zhao Q, Yuan J. A cationitrile sequence encodes mild poly(ionic liquid)crosslinking for advanced composite membranes[J]. Materials Horizons, 2020, 7(10):2683-2689.
52 Zhang C, Zhang Y, Zhao Q, Xue Z. Facile fabrication of robust gel poly(ionic liquid)electrolytes via base treatment at room temperature[J]. Polymer Chemistry, 2021, 12(39):5631-5639.
53 Zhang C, Liu X, Gong J, Zhao Q. Liquid sculpture and curing of bio-inspired polyelectrolyte aqueous two-phase systems[J]. Nature Communications, 2023, 14(1):2456.
54 Li X, Wang Y L, Wen J, Zheng L, Qian C, Cheng Z, Zuo H, Yu M, Yuan J, Li R, Zhang W, Liao Y. Porous organic polycarbene nanotrap for efficient and selective gold stripping from electronic waste[J]. Nature Communications,2023, 14(1):263.
55 Zuo P, Ye C, Jiao Z, Luo J, Fang J, Schubert U S, McKeown N B, Liu T L, Yang Z, Xu T. Near-frictionless ion transport within triazine framework membranes[J]. Nature, 2023:1-7.
56 Peng H, Su Y, Liu X, Li J, Zhao Q. Designing gemini-electrolytes for scalable Mg2+/Li+separation membranes and modules[J]. Advanced Functional Materials, 2023:2305815.
57 Peng H, Yu K, Liu X, Li J, Hu X, Zhao Q. Quaternization-spiro design of chlorine-resistant and high-permeance lithium separation membranes[J]. Nature Communications, 2023, 14(1):5483.
58 Ni Y, Peng H, Zhao Q. Ultrathin poly(ionic liquid)nanomembranes for high performance Mg2+/Li+separation[J].Advanced Materials Interfaces, 2022, 9(32):2201797.
59 Hu Y, Xu L, Zhang W, Wang H. Large-scale and controllable syntheses of covalently-crosslinked poly(ionic liquid)nanoporous membranes[J]. Angewandte Chemie International Edition, 2023, 62(20):e202302168.
2 Durmaz E N, Sahin S, Virga E, De Beer S, De Smet L C P M, De Vos W M. Polyelectrolytes as building blocks for next-generation membranes with advanced functionalities[J]. ACS Applied Polymer Materials, 2021, 3(9):4347-4374.
3 唐清泉,赵强.多孔聚电解质功能材料研究进展[J].高分子通报, 2018(6):85-95.
4 DuChanois R M, Heiranian M, Yang J, Porter C J, Li Q, Zhang X, Verduzco R, Elimelech M. Designing polymeric membranes with coordination chemistry for high-precision ion separations[J]. Science Advances, 2022, 8(9):eabm9436.
5 Gao D, Thangavel G, Lee J, Lv J, Li Y, Ciou J H, Xiong J, Park T, Lee P S. A supramolecular gel-elastomer system for soft iontronic adhesives[J]. Nature Communications, 2023, 14(1):1990.
6 Maan A M C, Hofman A H, De Vos W M, Kamperman M. Recent developments and practical feasibility of polymer-based antifouling coatings[J]. Advanced Functional Materials, 2020, 30(32):2000936.
7 Tang S, Gong J, Shi Y, Wen S, Zhao Q. Spontaneous water-on-water spreading of polyelectrolyte membranes inspired by skin formation[J]. Nature Communications, 2022, 13(1):3227.
8 Zhao Q, Dunlop J W C, Qiu X, Huang F, Zhang Z, Heyda J, Dzubiella J, Antonietti M, Yuan J. An instant multiresponsive porous polymer actuator driven by solvent molecule sorption[J]. Nature Communications, 2014, 5(1):4293.
9 Zhang Z, Wen L, Jiang L. Nanofluidics for osmotic energy conversion[J]. Nature Reviews Materials, 2021, 6(7):622-639.
10 Wang Y, Zanelotti C J, Wang X, Kerr R, Jin L, Kan W H, Dingemans T J, Forsyth M, Madsen L A. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways[J]. Nature Materials, 2021,20(9):1255-1263.
11 He Y, Cheng Y, Yang C, Guo C F. Creep-free polyelectrolyte elastomer for drift-free iontronic sensing[J]. Nature Materials, 2024, 23(8):1107-1114.
12 Kim H J, Chen B, Suo Z, Hayward R C. Ionoelastomer junctions between polymer networks of fixed anions and cations[J]. Science, 2020, 367(6479):773-776.
13 Qian W, Texter J, Yan F. Frontiers in poly(ionic liquid)s:syntheses and applications[J]. Chemical Society Reviews,2017, 46(4):1124-1159.
14 Kuhn H, M?bius D. Systems of monomolecular layers-assembling and physico-chemical behavior[J]. Angewandte Chemie International Edition in English, 1971, 10(9):620-637.
15 Decher G. Fuzzy nanoassemblies:toward layered polymeric multicomposites[J]. Science, 1997, 277(5330):1232-1237.
16 Zhang S Y, Zhuang Q, Zhang M, Wang H, Gao Z, Sun J K, Yuan J. Poly(ionic liquid)composites[J]. Chemical Society Reviews, 2020, 49(6):1726-1755.
17 Yuan J, Mecerreyes D, Antonietti M. Poly(ionic liquid)s:an update[J]. Progress in Polymer Science, 2013, 38(7):1009-1036.
18 Hu Y, Xu L, Wang L, Shao Y, Wang H. Functional poly(ionic liquid)porous membranes:from fabrications to advanced applications[J]. Chinese Journal of Chemistry. 2023, 41(2):225-236.
19 Srivastava S, Kotov N A. Composite layer-by-layer(LBL)assembly with inorganic nanoparticles and nanowires[J]. Accounts of Chemical Research, 2008, 41(12):1831-1841.
20 Borges J, Mano J F. Molecular interactions driving the layer-by-layer assembly of multilayers[J]. Chemical Reviews, 2014, 114(18):8883-8942.
21 W?gberg L, Erlandsson J. The use of layer-by-layer self-assembly and nanocellulose to prepare advanced functional materials[J]. Advanced Materials, 2021, 33(28):2001474.
22 Kim Y H, Park J, Yoo P J, Hammond P T. Selective assembly of colloidal particles on a nanostructured template coated with polyelectrolyte multilayers[J]. Advanced Materials, 2007, 19(24):4426-4430.
23 Yuan W, Weng G M, Lipton J, Li C M, Van Tassel P R, Taylor A D. Weak polyelectrolyte-based multilayers via layer-by-layer assembly:approaches, properties, and applications[J]. Advances in Colloid and Interface Science,2020, 282:102200.
24 Erwin A J, Xu W, He H, Matyjaszewski K, Tsukruk V V. Linear and star poly(ionic liquid)assemblies:surface monolayers and multilayers[J]. Langmuir, 2017, 33(13):3187-3199.
25 Zhou T, Lei Y, Zhang H, Zhang P, Yan C, Zheng Z, Chen Y, Yu Y. Visible-light photolabile, charge-convertible poly(ionic liquid)for light-degradable films and carbon-based electronics[J]. ACS Applied Materials&Interfaces,2016, 8(36):23431-23436.
26 Zuo T T, Liu K, Wei X Q, Hu S, Che Q T. Constructing lamellar low temperature anion exchange membranes based on polymerized ionic liquid and graphene oxide nanosheets[J]. Materials Today Chemistry, 2023, 31:101615.
27 Oss-Ronen L, Schmidt J, Abetz V, Radulescu A, Cohen Y, Talmon Y. Characterization of block copolymer selfassembly:from solution to nanoporous membranes[J]. Macromolecules, 2012, 45(24):9631-9642.
28 Dorin R M, Phillip W A, Sai H, Werner J, Elimelech M, Wiesner U. Designing block copolymer architectures for targeted membrane performance[J]. Polymer, 2014, 55(1):347-353.
29 Peinemann K V, Abetz V, Simon P F W. Asymmetric superstructure formed in a block copolymer via phase separation[J]. Nature Materials, 2007, 6(12):992-996.
30 Weber R L, Ye Y, Schmitt A L, Banik S M, Elabd Y A, Mahanthappa M K. Effect of nanoscale morphology on the conductivity of polymerized ionic liquid block copolymers[J]. Macromolecules, 2011, 44(14):5727-5735.
31 Peltekoff A J, Brixi S, Niskanen J, Lessard B H. Ionic liquid containing block copolymer dielectrics:designing for high-frequency capacitance, low-voltage operation, and fast switching speeds[J]. JACS Au, 2021, 1(7):1044-1056.
32 Guan Z, Wang B, Wang Y, Chen J, Bao C, Zhang Q. Iron-containing poly(ionic liquid)membranes:a heterogeneous Fenton reaction and enhanced anti-fouling ability[J]. Polymer Chemistry, 2022, 13(1):130-138.
33 Luo L, Lyu X, Tang Z, Shen Z, Fan X H. Thin-film self-assembly of block copolymers containing an azobenzenebased liquid crystalline polymer and a poly(ionic liquid)[J]. Macromolecules, 2020, 53(21):9619-9630.
34 Ma Y, Hu C, Yi G, Jiang Z, Su X, Liu Q, Lee J Y, Lee S Y, Lee Y M, Zhang Q. Durable multiblock poly(biphenyl alkylene)anion exchange membranes with microphase separation for hydrogen energy conversion[J]. Angewandte Chemie, 2023, 135(41):e202311509.
35 Zhao Q, Yin M, Zhang A P, Prescher S, Antonietti M, Yuan J. Hierarchically structured nanoporous poly(ionic liquid)membranes:facile preparation and application in fiber-optic p H sensing[J]. Journal of the American Chemical Society, 2013, 135(15):5549-5552.
36 T?uber K, Zhao Q, Antonietti M, Yuan J. Tuning the pore size in gradient poly(ionic liquid)membranes by small organic acids[J]. ACS Macro Letters, 2015, 4(1):39-42.
37 Jiang Z, Liu Y, Shao Y, Zhao P, Yuan J, Wang H. Fine tuning the hydrophobicity of counter-anions to tailor pore size in porous all-poly(ionic liquid)membranes[J]. Polymer International, 2019, 68(9):1566-1569.
38 Wei S, Xiao Y, Jiang H, Héraly F, Zhang L, Huang W, Yuan J, Lang M. Polypeptide-based vapor-responsive porous poly(ionic liquid)actuators:from reversible to unexpectedly irreversible actuation[J]. Materials Today Communications, 2023, 35:105878.
39 Hu Y, Teng Y, Sun Y, Liu P, Fu L, Yang L, Kong X Y, Zhao Q, Jiang L, Wen L. Bioinspired poly(ionic liquid)membrane for efficient salinity gradient energy harvesting:electrostatic crosslinking induced hierarchical nanoporous network[J]. Nano Energy, 2022, 97:107170.
40 Ni Y, Yin M, Dong S, Huang F, Zhao Q. A poly(ionic liquid)-pillar[5] arene honeycombed isoporous membrane for high performance Cu2+sensors[J]. Applied Surface Science, 2020, 500:144056.
41 Lin H, Gong J, Miao H, Guterman R, Song H, Zhao Q, Dunlop J W C, Yuan J. Flexible and actuating nanoporous poly(ionic liquid)-paper-based hybrid membranes[J]. ACS Applied Materials&Interfaces, 2017, 9(17):15148-15155.
42 Zhang Y J, Wu H, Tan L X, Wei Y, Ren J J, Li Y J, Yu X D, Sun J K. Conjugated poly(ionic liquid)-based nanoporous membrane for rapid moisture response[J]. Macromolecular Rapid Communications, 2023, 44(6):2200846.
43 Zhao Q, Lee D W, Ahn B K, Seo S, Kaufman Y, Israelachvili J N, Waite J H. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange[J]. Nature Materials, 2016, 15(4):407-412.
44 Fellinger T P, Thomas A, Yuan J, Antonietti M. 25th anniversary article:“cooking carbon with salt”:carbon materials and carbonaceous frameworks from ionic liquids and poly(ionic liquid)s[J]. Advanced Materials, 2013,25(41):5838-5855.
45 Yuan J, Giordano C, Antonietti M. Ionic liquid monomers and polymers as precursors of highly conductive,mesoporous, graphitic carbon nanostructures[J]. Chemistry of Materials, 2010, 22(17):5003-5012.
46 Wang H, Min S, Ma C, Liu Z, Zhang W, Wang Q, Li D, Li Y, Turner S, Han Y, Zhu H, Abou-Hamad E, Hedhili M N, Pan J, Yu W, Huang K W, Li L J, Yuan J, Antonietti M, Wu T. Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting[J]. Nature Communications, 2017, 8(1):13592.
47 Wang Y, Shao Y, Wang H, Yuan J. Advanced heteroatom-doped porous carbon membranes assisted by poly(ionic liquid)design and engineering[J]. Accounts of Materials Research, 2020, 1(1):16-29.
48 Shao Y, Jiang Z, Zhang Y, Wang T, Zhao P, Zhang Z, Yuan J, Wang H. All-poly(ionic liquid)membrane-derived porous carbon membranes:scalable synthesis and application for photothermal conversion in seawater desalination[J]. ACS Nano, 2018, 12(11):11704-11710.
49 Wang T, Wang Q, Wang Y, Da Y, Zhou W, Shao Y, Li D, Zhan S, Yuan J, Wang H. Atomically dispersed semimetallic selenium on porous carbon membrane as an electrode for hydrazine fuel cells[J]. Angewandte Chemie International Edition, 2019, 58(38):13466-13471.
50 Digby Z A, Yang M, Lteif S, Schlenoff J B. Salt resistance as a measure of the strength of polyelectrolyte complexation[J]. Macromolecules, 2022, 55(3):978-988.
51 Dong Z, Zhang C, Peng H, Gong J, Wang H, Zhao Q, Yuan J. A cationitrile sequence encodes mild poly(ionic liquid)crosslinking for advanced composite membranes[J]. Materials Horizons, 2020, 7(10):2683-2689.
52 Zhang C, Zhang Y, Zhao Q, Xue Z. Facile fabrication of robust gel poly(ionic liquid)electrolytes via base treatment at room temperature[J]. Polymer Chemistry, 2021, 12(39):5631-5639.
53 Zhang C, Liu X, Gong J, Zhao Q. Liquid sculpture and curing of bio-inspired polyelectrolyte aqueous two-phase systems[J]. Nature Communications, 2023, 14(1):2456.
54 Li X, Wang Y L, Wen J, Zheng L, Qian C, Cheng Z, Zuo H, Yu M, Yuan J, Li R, Zhang W, Liao Y. Porous organic polycarbene nanotrap for efficient and selective gold stripping from electronic waste[J]. Nature Communications,2023, 14(1):263.
55 Zuo P, Ye C, Jiao Z, Luo J, Fang J, Schubert U S, McKeown N B, Liu T L, Yang Z, Xu T. Near-frictionless ion transport within triazine framework membranes[J]. Nature, 2023:1-7.
56 Peng H, Su Y, Liu X, Li J, Zhao Q. Designing gemini-electrolytes for scalable Mg2+/Li+separation membranes and modules[J]. Advanced Functional Materials, 2023:2305815.
57 Peng H, Yu K, Liu X, Li J, Hu X, Zhao Q. Quaternization-spiro design of chlorine-resistant and high-permeance lithium separation membranes[J]. Nature Communications, 2023, 14(1):5483.
58 Ni Y, Peng H, Zhao Q. Ultrathin poly(ionic liquid)nanomembranes for high performance Mg2+/Li+separation[J].Advanced Materials Interfaces, 2022, 9(32):2201797.
59 Hu Y, Xu L, Zhang W, Wang H. Large-scale and controllable syntheses of covalently-crosslinked poly(ionic liquid)nanoporous membranes[J]. Angewandte Chemie International Edition, 2023, 62(20):e202302168.
基本信息:
DOI:10.16026/j.cnki.iea.2024050355
中图分类号:TB383.2;O631.5
引用信息:
[1]胡颖一,王鸿.功能聚离子液体多孔膜的研究进展[J].离子交换与吸附,2024,40(05):355-365.DOI:10.16026/j.cnki.iea.2024050355.
基金信息:
国家自然科学基金面上项目(基金号52373008); 天津市自然科学基金(基金号19JCYBJC17500)