nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 01, v.41 27-45
废弃PET催化氢解材料
基金项目(Foundation): 国家自然科学基金(基金号22378138)
邮箱(Email): mxia@phelix.cn.;xinzhou@scut.edu.cn;
DOI: 10.16026/j.cnki.iea.2024010018
摘要:

作为全球消耗量最大的塑料之一,PET (聚对苯二甲酸乙二醇酯)在食品包装、饮料瓶、纺织品、建筑等领域得到广泛应用。然而,PET不断增长的废弃物排放给环境可持续发展带来压力。与焚烧或降解为CO2的技术相比,将PET氢解为化工原料并实现高值利用的催化氢解技术近年来受到关注。该技术可在实现废弃物资源化利用的同时带来经济效益。目前,催化氢解技术尚未投入工业应用,其面临的主要挑战在于关键催化材料的催化性能和制备成本。因此,发展高性能催化剂是实现催化氢解技术工业应用的关键。文章综述了PET催化氢解技术的发展现状,特别是关键催化材料的研究进展,归纳了主要催化剂的设计策略,在此基础上探讨了高效PET催化氢解材料的未来发展方向,以期为PET催化氢解技术的进一步发展提供支持。

Abstract:

As one of the largest consumed plastics in the world, PET(polyethylene terephthalate) is widely used in food packaging, beverage bottles, textiles, construction and other fields. However, the continuous increase in PET waste emissions also poses problems for sustainable environmental development. Compared with technologies such as incineration or degrading PET into CO2, catalytic hydrogenolysis technology which depolymerizes it into high-value chemical raw materials, has received much attention in recent years. This technology can bring economic benefits while realizing waste recycling. Currently, the catalytic hydrogenolysis technology has not been put into industrial use, and the main challenges come from the catalytic performance and preparation cost of key catalytic materials. Therefore, the development of low-cost and high-performance catalysts is the key to the industrial application of this technology. This article summarizes the research progress of PET catalytic hydrogenolysis, catalyst design strategies with practical application potential, and points out the possible development direction of PET high-efficiency catalytic hydrogenolysis technology in the future. It is believed that this paper is of great significance for promoting its development and industrial application.

参考文献

1 Fagnani D E,Tami J L,Copley G,et al.100th Anniversary of macromolecular science viewpoint:Redefining sustainable polymers[J].ACS Macro Letters,2021,10:41-53.

2 Bohre A,Jadhao P R,Tripathi K,et al.Chemical recycling processes of waste polyethylene terephthalate using solid catalysts[J].Chem Sus Chem,2023,16:e202300142.

3 Smith R L,Takkellapati S,Riegerix R C.Recycling of plastics in the United States:Plastic material flows and polyethylene terephthalate(PET) recycling processes[J].ACS Sustain Chem Eng,2022,10:2084-2096.

4 Berlino M,Mangano M C,Vittor C D,et al.Effects of microplastics on the functional traits of aquatic benthic organisms:A global-scale meta-analysis[J].Environmental Pollution,2021,285:117174.

5 Lamberti F M,Román-Ramírez L A,Wood J.Recycling of bioplastics:Routes and benefits[J].Journal of Polymers and the Environment,2020,28:2551-2571.

6 Barboza L G A,Vethaak A D,Lavorante B R B O,et al.Marine microplastic debris:An emerging issue for food security,food safety and human health[J].Marine Pollution Bulletin,2018,133:336-348.

7 Jambeck J R,Geyer R,Wilcox C,et al.Plastic waste inputs from land into the ocean[J].Science,2015,347(6223):768-771.

8 Wang J,Yuan X,Deng S,et al.Waste polyethylene terephthalate(PET) plastics-derived activated carbon for CO2capture:A route to a closed carbon loop[J].Green Chemistry,2020,22:6836-6845.

9 Kawai F,Kawabata T,Oda M.Current state and perspectives related to the polyethylene terephthalate hydrolases available for biorecycling[J].ACS Sustainable Chemistry&Engineering,2020,8:8894-8908.

10 Sarda P,Hanan J C,Lawrence J G,et al.Sustainability performance of polyethylene terephthalate,clarifying challenges and opportunities[J].Journal of Polymer Science,2022,60(1):7-31.

11 Arias J J R,Thielemans W.Instantaneous hydrolysis of PET bottles:An efficient pathway for the chemical recycling of condensation polymers[J].Green Chemistry,2021,23:9945-9956.

12 Kang M J,Kim H T,Lee M W,et al.A chemo-microbial hybrid process for the production of 2-pyrone-4,6-dicarboxylic acid as a promising bioplastic monomer from PET waste[J].Green Chemistry,2020,22:3461-3469.

13 Ghasemi M H,Neekzad N,Ajdari F B,et al.Mechanistic aspects of poly(ethylene terephthalate) recycling-toward enabling high quality sustainability decisions in waste management[J].Environmental Science and Pollution Research,2021,28:43074-43101.

14 Singh A,Rorrer N A,Nicholson S R,et al.Techno-economic,life-cycle,and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate)[J].Joule,2021,5:2479-2503.

15 Chen L,Pelton R E O,Smith T M.Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate(PET) bottles[J].Journal of Cleaner Production,2016,137:667-676.

16 Geyer R,Jambeck J R,Law K L.Production,use,and fate of all plastics ever made[J].Science Advances,2017,3(7):e1700782.

17 Benavides P T,Dunn J B,Han J,et al.Exploring comparative energy and environmental benefits of virgin,recycled,and bio-derived PET bottles[J].ACS Sustainable Chemistry&Engineering,2018,6:9725-9733.

18 Ioakeimidis C,Fotopoulou K N,Karapanagioti H K,et al.The degradation potential of PET bottles in the marine environment:An ATR-FTIR based approach[J].Sci Rep,2016,6:23501.

19 Group C W.The new plastics economy:Catalysing action[J].Chemical Weekly,2017(30):62.

20 Ellen Mac Arthur Foundation.The new plastics economy:Rethinking the future of plastics[R].Davos:World Economic Forum,2016.

21 Roy P S,Garnier G G,Allais F F,et al.Strategic approach towards plastic waste valorization:Challenges and promising phemical upcycling possibilities[J].Chem Sus Chem,2021,14:4007-4027.

22 Chen H,Wan K,Zhang Y,et al.Waste to wealth:Chemical recycling and chemical upcycling of waste plastics for a great future[J].Chem Sus Chem,2021,14:4123-4136.

23 Vollmer I,Jenks M J F,Roelands M C P,et al.Beyond mechanical recycling:Giving new life to plastic waste[J].Angewandte Chemie International Edition,2020,59:15402-15423.

24 Martín A J,Mondelli C,Jaydev S D,et al.Catalytic processing of plastic waste on the rise[J].Chem,2021,7:1487-1533.

25 Sang T,Wallis C J D,Hill G,et al.Polyethylene terephthalate degradation under natural and accelerated weathering[J].Onditions,2020,136:109873.

26 Zhang F,Zhao Y,Wang Y,et al.Current technologies for plastic waste treatment:A review[J].Journal of Cleaner Production,2021,282:124523.

27 Garcia J M,Robertson M L.The future of plastics recycling.[J].Science,2017,358:870-872

28 Rahimi A,García J M.Chemical recycling of waste plastics for new materials production[J].Nature Reviews Chemistry,2017,1:0046.

29 Guo Z,Yan N,Lapkin A A.Towards circular economy:Integration of bio-waste into chemical supply chain[J].Current Opinion in Chemical Engineering,2019,26:148-156.

30 Al-Salem S M,Lettieri P,Baeyens J.Recycling and recovery routes of plastic solid waste (PSW):A review[J].Waste Management,2009,29:2625-2643.

31 Ragaert K,Delva L,Geem K V.Mechanical and chemical recycling of solid plastic waste[J].Waste Management,2017,69:24-58.

32 Predel M,Kaminsky W.Pyrolysis of mixed polyolefins in a fluidised-bed reactor and on a pyro-GC/MS to yield aliphatic waxes[J].Polymer Degradation and Stability,2000,70:373-385.

33 Munir D,Irfan M F,Usman M R.Hydrocracking of virgin and waste plastics:A detailed review[J].Renewable and Sustainable Energy Reviews,2018,90:490-515.

34 Gomes T S Visconte L L Y,Pacheco E B A V.Life cycle assessment of polyethylene terephthalate packaging:An overview[J].Journal of Polymers and the Environment,2019,27:533-548.

35 Nakatani J,Fujii M,Moriguchi Y,et al.Life-cycle assessment of domestic and transboundary recycling of postconsumer PET bottles[J].The International Journal of Life Cycle Assessment,2010,15:590-597.

36 Mark L O,Cendejas M C,Hermans I.The use of heterogeneous catalysis in the chemical valorization of plastic waste[J].Chem Sus Chem,2020,13:5808-5836.

37 Britt P F,Coates G W,Winey K I,et al.Report of the basic energy sciences roundtable on chemical upcycling of polymers[R].United States:Medium:ED,2019.

38 Atta A M,Abdel-Raouf M E,Elsaeed S M,et al.Curable resins based on recycled poly(ethylene terephthalate) for coating applications[J].Progress in Organic Coatings,2006,55:50-59.

39 Tawfik M E,Ahmed N M,Eskander S B.Aminolysis of poly(ethylene terephthalate) wastes based on sunlight and utilization of the end product[bis(2-hydroxyethylene)terephthalamide]as an ingredient in the anticorrosive paints for the protection of steel structures[J].Journal of Applied Polymer Science,2011,120:2842-2855.

40 Pingale N D,Shukla S R.Microwave-assisted aminolytic depolymerization of PET waste[J].European Polymer Journal,2009,45:2695-2700.

41 Wei J,Zhu M,Liu B,et al.Hydrodeoxygenation of oxygen-containing aromatic plastic wastes to liquid organic hydrogen carriers[J].Angew Chem Int Ed Engl,2023,62:e202310505.

42 Balaraman E,Gnanaprakasam B,Shimon L J W,et al.Direct hydrogenation of amides to alcohols and amines under mild conditions[J].Journal of the American Chemical Society,2010,132:16756-16758.

43 Lee K,Jing Y,Wang Y,et al.A unified view on catalytic conversion of biomass and waste plastics[J].Nat Rev Chem,2022,6:635-652.

44 Goto M K,Kodama H,Hirose A,et al.Depolymerization of polyethylene terephthalate in supercriticalmethanol[J].Phys.:Condens.Matter,2002,14:11427-11430.

45 Genta M I,Sasaki T,Goto M,et al.Depolymerization mechanism of poly(ethylene terephthalate) insupercritical methanol[J].Ind.Eng.Chem.Res,2005,44:3894-3900.

46 Shojaei B,Abtahi M,Najafi M.Chemical recycling of PET:A stepping‐stone toward sustainability.[J].Polymers for Advanced Technologies,2020,31:2912-2938.

47 Krall E M,Klein T W,Andersen R J,et al.Controlled hydrogenative depolymerization of polyesters and polycarbonates catalyzed by ruthenium(II)PNN pincer complexes[J].Chem Commun (Camb),2014,50:4884-4887.

48 Ito M,Ootsuka T,Watari R,et al.Catalytic hydrogenation of carboxamides and esters by well-defined Cp*Ru complexes bearing a protic amine ligand[J].J Am Chem Soc,2011,133:4240-4242.

49 Ito M,Ikariya T.Catalytic hydrogenation of polar organic functionalities based on Ru-mediated heterolytic dihydrogen cleavage[J].Chemical Communications,2007:5134-5142.

50 Zhang J,Leitus G,Ben-David Y,et al.Efficient homogeneous catalytic hydrogenation of esters to alcohols[J].Angew Chem Int Ed Engl,2006,45:1113-1115.

51 Balaraman E,Fogler E,Milstein D.Efficient hydrogenation of biomass-derived cyclic di-esters to 1,2-diols[J].Chem Commun(Camb),2012,48:1111-1113.

52 Westhues S J I,Klankermayer J.Molecular catalyst systems as key enablers for tailored polyesters and polycarbonate recycling concepts.[J].Science Advance,2018,4:8.

53 Ito T O M,Watari R,Shiibashi A,et al.Catalytic hydrogenation of carboxamides and esters by well-defined Cp*Ru complexes bearing a protic amine ligand.[J].J Am Chem Soc,2011,133:4240-4242.

54 Sharuddin S D A,Abnisa F,Wan Daud W M A,et al.A review on pyrolysis of plastic wastes[J].Energy Conversion and Management,2016,115:308-326.

55 Bavykina A,Kolobov N,Khan I S,et al.Metal-Organic frameworks in heterogeneous catalysis:Recent progress,new trends,and future perspectives.[J].Chemical Reviews,2020,120:8468-8535.

56 Mochizuki S,Kitao T,Uemura T.Controlled polymerizations using metal-organic frameworks.[J].Chem Commun(Camb),2018,54:11843-11856.

57 Wei J,Zhu M,Liu B,et al.Hydrodeoxygenation of oxygen-containing aromatic plastic wastes to lquid organic hydrogen carriers[J].Angewandte Chemie(International ed.in English),2023,62(46):e202310505.

58 Lobbert L,Chheda S,Zheng J,et al.Influence of 1-butene adsorption on the dimerization activity of single metal cations on Ui O-66 nodes[J].J Am Chem Soc,2023,145:1407-1422.

59 Jiao L,Jiang H L.Metal-organic-framework-based single-atom catalysts for energy applications[J].Chem,2019,5:786-804.

60 Jing Y,Dong L,Guo Y,et al.Chemicals from lignin:A review of catalytic conversion involving hydrogen[J].Chem Sus Chem,2020,13:4181-4198.

61 Kim S,Kwon E E,Kim Y T,et al.Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts[J].Green Chemistry,2019,21:3715-3743.

62 Du S,Valla J A,Parnas R S,et al.Conversion of polyethylene terephthalate based waste carpet to benzene-rich Oils through thermal,catalytic,and catalytic steam pyrolysis[J].ACS Sustainable Chemistry&Engineering,2016,4:2852-2860.

63 Diaz-Silvarrey L S,Mc Mahon A,Phan A N.Benzoic acid recovery via waste poly(ethylene terephthalate)(PET)catalytic pyrolysis using sulphated zirconia catalyst[J].Journal of Analytical and Applied Pyrolysis,2018,134:621-631.

64 Kumagai S,Yamasaki R,Kameda T,et al.Catalytic pyrolysis of poly(ethylene terephthalate) in the presence of metal oxides for aromatic hydrocarbon recovery using tandemμ-Reactor-GC/MS[J].Energy&Fuels,2020,34:2492-2500.

65 Mouat A R,Lohr T L,Wegener E C,et al.Reactivity of a carbon-supported single-site molybdenum dioxo catalyst for biodiesel synthesis[J].ACS Catalysis,2016,6:6762-6769.

66 Xiao L P,Wang L,Li H,et al.Catalytic hydrogenolysis of lignins into phenolic compounds over carbon nanotube supported molybdenum oxide[J].ACS Catalysis,2017,7:7535-7542.

67 Junhong F J D,Si R,Sun K J,et al.Synergistic effects for enhanced catalysis in a dual single-atom catalyst[J].ACS Catalysis,2021,11(4):1952-1961.

68 Kratish Y,Li J,Liu S,et al.Polyethylene terephthalate deconstruction catalyzed by a carbon-supported single-site molybdenum-dioxo complex[J].Angew Chem Int Ed Engl,2020,59:19857-19861.

69 Liu J,Li Y,Jia X,et al.Catalytic pyrolysis of poly(ethylene terephthalate) with molybdenum oxides for the production of olefins and terephthalic acid[J].Industrial&Engineering Chemistry Research,2022,61:5054-5065.

70 Zhang J,Yan N.Ni Ag catalysts for selective hydrogenolysis of the lignin C-O bond[J].Particle&Particle Systems Characterization,2016,33:610-619.

71 Zhang J,Sun J,Wang Y.Recent advances in the selective catalytic hydrodeoxygenation of lignin-derived oxygenates to arenes[J].Green Chemistry,2020,22:1072-1098.

72 Chiu C C,Genest A,Borgna A,et al.Hydrodeoxygenation of guaiacol over Ru(0001):A DFT study.[J].ACSCatalysis,2014,4:4178-4188.

73 Shi D,Arroyo-Ramírez L,Vohs J M.The use of bimetallics to control the selectivity for the upgrading of ligninderived oxygenates:Reaction of anisole on Pt and Pt Zn catalysts[J].Journal of Catalysis,2016,340:219-226.

74 Crespos C,Collins M A,Pijper E,et al.Multi-dimensional potential energy surface determination by modified shepard interpolation for a molecule-surface reaction:H2+Pt(111)[J].Chemical Physics Letters,2003,376:566-575.

75 Ma D,Lu S,Liu X,et al.Depolymerization and hydrodeoxygenation of lignin to aromatic hydrocarbons with a Ru catalyst on a variety of Nb-based supports[J].Chinese Journal of Catalysis,2019,40:609-617.

76 Yang F,Liu D,Zhao Y,et al.Size dependence of vapor phase hydrodeoxygenation of m-Cresol on Ni/Si O2catalysts[J].ACS Catalysis,2018,8:1672-1682.

77 Dong L,Lin L,Han X,et al.Breaking the limit of lignin monomer production via cleavage of interunit carboncarbon linkages[J].Chem,2019,5:1521-1536.

78 Shao Y,Xia Q,Dong L,et al.Selective production of arenes via direct lignin upgrading over a niobium-based catalyst[J].Nature Communications,2017,8(1):16104.

79 Sanyal U,Song Y,Singh N,et al.Structure sensitivity in hydrogenation reactions on Pt/C in aqueous‐phase[J].Chem Cat Chem,2018,11:575-582.

80 Xia Q N,Cuan Q,Liu X H,et al.Pd/Nb OPO4 multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans[J].Angew Chem Int Ed Engl,2014,53:9755-9760.

81 Shao Y,Xia Q,Dong L,et al.Selective production of arenes via direct lignin upgrading over a niobium-based catalyst[J].Nat Commun,2017,8:16104.

82 Xia Q,Chen Z,Shao Y,et al.Direct hydrodeoxygenation of raw woody biomass into liquid alkanes[J].Nat Commun,2016,7:11162.

83 Lu S,Jing Y,Feng B,et al.H (2)-free plastic conversion:Converting PET back to BTX by unlocking hidden hydrogen.[J].Chem Sus Chem,2021,14:4242-4250.

84 Jing Y,Wang Y,Furukawa S,et al.Towards the circular economy:Converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst[J].Angew Chem Int Ed Engl,2021,60:5527-5535.

85 Li R,Zeng W,Zhao R,et al.Ti O2 nanoparticle supported Ru catalyst for chemical upcycling of polyethylene terephthalate to alkanes[J].Nano Research,2023,16:12223-12229.

86 Murali V,Kim J R,Park Y K,et al.Water-assisted single-step catalytic hydrodeoxygenation of polyethylene terephthalate into gasoline-and jet fuel-range cycloalkanes over supported Ru catalysts in a biphasic system[J].Green Chemistry,2023,25:8570-8583.

87 Zhang J,Gao M,Wang R,et al.Switching of CO2 hydrogenation selectivity via chlorine poisoning over Ru/Ti O2catalyst[J].Nano Research,2023,16:4786-4792.

88 Valdés-Martínez O U,Díaz de León J N,Santolalla C E,et al.Fundamental study of catalytic functionalities involved in effective C-O cleavage over ru-supported catalysts[J].Industrial&Engineering Chemistry Research,2021,60:18880-18890.

89 Liu X,Jia W,Xu G,et al.Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols over co-based catalysts[J].ACS Sustainable Chemistry&Engineering,2017,5:8594-8601.

90 Oi L E,Choo M Y,Lee H V,et al.Recent advances of titanium dioxide(Ti O2) for green organic synthesis[J].RSCAdvances,2016,6:108741-108754.

91 Yang Y,Hao J,Lv G.Comparative study of catalytic hydrodeoxygenation performance over SBA-15 and Ti O2supported 20 wt%Ni for bio-oil upgrading[J].Fuel,2019,253:630-636.

92 Héroguel F,Nguyen X T,Luterbacher J S.Catalyst support and solvent effects during lignin depolymerization and hydrodeoxygenation[J].ACS Sustainable Chemistry&Engineering,2019,7:16952-16958.

93 Lu M,Du H,Wei B,et al.Catalytic hydrodeoxygenation of guaiacol over palladium catalyst on different titania supports[J].Energy&Fuels,2017,31:10858-10865.

94 Hongkailers S,Jing Y,Wang Y,et al.Recovery of arenes from polyethylene terephthalate (PET) over a Co/Ti O2catalyst[J].Chem Sus Chem,2021,14(19):4330-4339.

95 Ye M,Li Y,Yang Z,et al.Ruthenium/Ti O2-catalyzed hydrogenolysis of polyethylene terephthalate:Reaction pathways dominated by coordination environment[J].Angew Chem Int Ed Engl,2023,62:e202301024.

96 Li R,Wang D.Understanding the structure-performance relationship of active sites at atomic scale[J].Nano Research,2022,15:6888-6923.

97 Zheng X,Li B,Wang Q,et al.Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis[J].Nano Research,2022,15:7806-7839.

98 Han A,Sun W,Wan X,et al.Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance[J].2023,62:e202303185.

99 Gan T,Wang D.Atomically dispersed materials:Ideal catalysts in atomic era[J].Nano Research,2024,17:18-38.

100 Ji S,Chen Y,Wang X,et al.chemical synthesis of single atomic site catalysts[J].Chemical Reviews,2020,120:11900-11955.

101 Wang A,Li J,Zhang T.Heterogeneous single-atom catalysis[J].Nature Reviews Chemistry,2018,2:65-81.

102 Gan T,Y J,Morris D,et al.Electron donation of non-oxide supports boosts O2 activation on nano-platinum catalysts[J].Nature Communications,2021,12:2741.

103 Zhu P,Xiong X,Wang D.Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction[J].Nano Research,2022,15:5792-5815.

104 Zhang Z,Zhu J,Chen S,et al.Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction[J].Angewandte Chemie,2022,135(3):1-8.

105 Zhang Z,Wang J,Ge X,et al.Mixed plastics wastes upcycling with high-stability single-atom Ru catalyst[J].J Am Chem Soc,2023,145:22836-22844.

106 Qiu C,Odarchenko Y,Lezcano-Gonzalez I,et al.Visualising Co nanoparticle aggregation and encapsulation in Co/Ti O2 catalysts and its mitigation through surfactant residues[J].Journal of Catalysis,2023,419:58-67.

107 Takeda Y,Tamura M,Nakagawa Y,et al.Characterization of Re-Pd/Si O2 catalysts for hydrogenation of stearic acid[J].ACS Catalysis,2015,5:7034-7047.

108 Robinson A M,Hensley J E,Medlin J W.Bifunctional catalysts for upgrading of biomass-derived oxygenates:Areview[J].ACS Catalysis,2016,6:5026-5043.

109 Wu G,Zhang N,Dai W,et al.Construction of bifunctional Co/H-ZSM-5 catalysts for the hydrodeoxygenation of stearic acid to diesel-range alkanes[J].Chem Sus Chem,2018,11:2179-2188.

110 Yan N,Ding S.Chemical breakthrough converts cellulose into ethanol[J].Trends in Chemistry,2019,1:457-458.

111 Zhong J,Pérez-Ramírez J,Yan N.Biomass valorisation over polyoxometalate-based catalysts[J].Green Chemistry,2021,23:18-36.

112 Do P T M,Foster A J,Chen J,et al.Bimetallic effects in the hydrodeoxygenation of meta-cresol on γ-Al2O3supported Pt-Ni and Pt-Co catalysts[J].Green Chemistry,2012,14:1388-1397.

113 Shu R,Li R,Liu Y,et al.Enhanced adsorption properties of bimetallic Ru Co catalyst for the hydrodeoxygenation of phenolic compounds and raw lignin-oil[J].Chemical Engineering Science,2020,227:115920.

114 Tran N T T,Uemura Y,Ramli A,et al.Vapor-phase hydrodeoxygenation of lignin-derived bio-oil over Al-MCM-41 supported Pd-Co and Pd-Fe catalysts[J].Molecular Catalysis,2022,523:111435.

115 Hanaor H A D,Sorrell C C.Review of the anatase to rutile phase transformation[J].Journal of Materials Science,2011,46(4):855-874.

116 Ooi X Y,Oi L E,Choo M Y,et al.Efficient deoxygenation of triglycerides to hydrocarbon-biofuel over mesoporous Al2O3-Ti O2 catalyst[J].Fuel Processing Technology,2019,194:106120.

117 Wu P,Lu G,Cai C.Cobalt-molybdenum synergistic catalysis for the hydrogenolysis of terephthalate-based polyesters[J].Green Chemistry,2021,23:8666-8672.

118 Jia W,Xu G,Liu X,et al.Direct selective hydrogenation of fatty acids and jatropha oil to fatty alcohols over cobalt-based catalysts in water[J].Energy&Fuels,2018,32:8438-8446.

119 Zhao H,Jiang Y,Liu H,et al.Direct synthesis of allyl alcohol from glycerol over Co Fe alloy[J].Applied Catalysis B:Environmental,2020,277:119187.

120 Shao Y,Fan M,Sun K,et al.The quantitative conversion of polyethylene terephthalate (PET) and Coca-Cola bottles to p-xylene over Co-based catalysts with tailored activities for deoxygenation and hydrogenation[J].Green Chemistry,2023,25:10513-10529.

121 Shao Y,Sun K,Fan M,et al.Synthesis of a thermally and hydrothermally stable copper-based catalyst via alloying of Cu with Ni and Zn for catalyzing conversion of furfural into cyclopentanone[J].ACS Sustainable Chemistry&Engineering,2022,10:8763-8777.

122 Shao Y,Kong L,Fan M,et al.Synergy between Cu and lewis acidic sites in Cu/Zn-Fe Ox catalysts for the selective conversion of poly(ethylene terephthalate) waste to p-Xylene and ethylene glycol[J].ACS Sustainable Chemistry&Engineering,2024,12:3818-3830.

123 Cheng Z,Zhou W,Lan G,et al.High-performance Cu/Zn O/Al2O3 catalysts for methanol steam reforming with enhanced Cu-Zn O synergy effect via magnesium assisted strategy[J].Journal of Energy Chemistry,2021,63:550-557.

124 Gallegos M V,Reimers W G,Luna C R,et al.Theoretical analysis of polyethylene terephthalate(PET) adsorption on Co and Mn-doped Zn O(000-1)[J].Molecular Catalysis,2022,531:112688.

125 Shao Y,Wu J,Zheng Z,et al.Alloying cobalt in Co-Fe-Al catalyst for achieving the selective conversion of furfural to cyclopentanone[J].Renewable Energy,2022,195:957-971.

126 Lende A.B.,Bhattacharjee S.and Tan C.-S.On-water hydrogenation of polyethylene terephthalate to environmentally friendly polyester by the catalyst Rh2.5Pt2.5/SBA-15[J].ACS Sustainable Chemistry&Engineering,2021,9(21):7224-7234.

127 Cui J,Tan J,Zhu Y,et al.Aqueous hydrogenation of levulinic acid to 1,4-pentanediol over Mo-modified Ru/activated carbon catalyst[J].Chem Sus Chem,2018,11:1316-1320.

128 Pan H B,Wai C M.Facile sonochemical synthesis of carbon nanotube-supported bimetallic Pt-Rh nanoparticles for room temperature hydrogenation of arenes[J].New Journal of Chemistry,2011,35:1649-1660.

129 Park J Y,Zhang Y,Joo S H,et al.Size effect of Rh Pt bimetallic nanoparticles in catalytic activity of CO oxidation:Role of surface segregation[J].Catalysis Today,2012,181:133-137.

130 Sarkari M,Darrat I,Knutson B L.Generation of microparticles using CO2 and CO2-philic antisolvents[J].AICh EJournal,2000,46:1850-1859.

131 Yu W,Hsu Y P,Tan C S.Synthesis of rhodium-platinum bimetallic catalysts supported on SBA-15 by chemical fluid deposition for the hydrogenation of terephthalic acid in water[J].Applied Catalysis B:Environmental,2016,196:185-192.

132 Shu R,Lin B,Wang C,et al.Upgrading phenolic compounds and bio-oil through hydrodeoxygenation using highly dispersed Pt/Ti O2 catalyst[J].Fuel,2019,239:1083-1090.

133 Zhao C,Lercher J A.Selective hydrodeoxygenation of lignin-derived phenolic monomers and dimers to cycloalkanes on Pd/C and HZSM-5 catalysts[J].Chem Cat Chem,2012,4:64-68.

134 Cheng C,Li P,Yu W,et al.Nonprecious metal/bimetallic catalytic hydrogenolysis of lignin in a mixed-solvent system[J].ACS Sustainable Chemistry&Engineering,2020,8:16217-16228.

135 Feng Y,Long S,Tang X,et al.Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion[J].Chem Soc Rev,2021,50:6042-6093.

136 Wu P.,Lu G.and Cai C.Cobalt-molybdenum synergistic catalysis for the hydrogenolysis of terephthalate-based polyesters[J].Green Chemistry,2021,23(21):8666-8672

137 Lende A B,Bhattacharjee S,Tan C S.Hydrogenation of polyethylene terephthalate to environmentally friendly polyester over vulcan XC-72 carbon supported Rh-Pt bimetallic catalyst[J].Catalysis Today,2022,388:117-124.

138 Jing Y,Wang Y,Furukawa S,et al.Towards the circular economy:Converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst[J].Angewandte Chemie International Edition,2021,60:5527-5535.

139 Kratish Y,Marks T J.Efficient polyester hydrogenolytic deconstruction via tandem catalysis[J].Angew Chem Int Ed Engl,2022,61:e202112576.

140 Tang C W,Chen Y J,Yeh C T,et al.Reforming of methanol to produce hydrogen over the Au/Zn O catalyst[J].International Journal of Hydrogen Energy,2021,46:80-88.

141 Tang H,Li N,Li G,et al.Synthesis of gasoline and jet fuel range cycloalkanes and aromatics from poly(ethylene terephthalate) waste[J].Green Chemistry,2019,21:2709-2719.

142 Gao Z,Ma B,Chen S,et al.Converting waste PET plastics into automobile fuels and antifreeze components[J].Nature Communications,2022,13:3343.

143 Liu H,Zhang J,Gu J,et al.Mechanistic insight into the hydrogen transfer pathway for selective upcycling of PETto arenes.[J].Journal of Cleaner Production,2023,425:138924.

144 Cheng J,Xie J,Xi Y,et al.Selective upcycling of polyethylene terephthalate towards high-valued oxygenated chemical methyl p-methyl benzoate using a Cu/Zr O2 catalyst[J].Angewandte Chemie,2024,63:e202319896.

145 Vollmer I,Jenks M J F,Mayorga González R,et al.Plastic waste conversion over a refinery waste catalyst[J].Angewandte Chemie,2021,60:16101-16108.

基本信息:

DOI:10.16026/j.cnki.iea.2024010018

中图分类号:X705

引用信息:

[1]邹雨翀,陈伟鹏,麦耀舜等.废弃PET催化氢解材料[J].离子交换与吸附,2025,41(01):27-45.DOI:10.16026/j.cnki.iea.2024010018.

基金信息:

国家自然科学基金(基金号22378138)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文