nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 01 v.41 27-45
废弃PET催化氢解材料

Summary

Note: Please note that the following content is generated by AI. CNKI does not take any responsibility related to this content.
基金项目(Foundation): 国家自然科学基金(基金号22378138)
邮箱(Email): mxia@phelix.cn.;xinzhou@scut.edu.cn;
DOI: 10.16026/j.cnki.iea.2024010018
中文作者单位:

华南理工大学化学与化工学院;菲利科思新材料有限公司;

摘要(Abstract):

作为全球消耗量最大的塑料之一,PET (聚对苯二甲酸乙二醇酯)在食品包装、饮料瓶、纺织品、建筑等领域得到广泛应用。然而,PET不断增长的废弃物排放给环境可持续发展带来压力。与焚烧或降解为CO_2的技术相比,将PET氢解为化工原料并实现高值利用的催化氢解技术近年来受到关注。该技术可在实现废弃物资源化利用的同时带来经济效益。目前,催化氢解技术尚未投入工业应用,其面临的主要挑战在于关键催化材料的催化性能和制备成本。因此,发展高性能催化剂是实现催化氢解技术工业应用的关键。文章综述了PET催化氢解技术的发展现状,特别是关键催化材料的研究进展,归纳了主要催化剂的设计策略,在此基础上探讨了高效PET催化氢解材料的未来发展方向,以期为PET催化氢解技术的进一步发展提供支持。

关键词(KeyWords): 催化氢解;PET;催化剂;废物资源化
参考文献

1 Fagnani D E,Tami J L,Copley G,et al.100th Anniversary of macromolecular science viewpoint:Redefining sustainable polymers[J].ACS Macro Letters,2021,10:41-53.

2 Bohre A,Jadhao P R,Tripathi K,et al.Chemical recycling processes of waste polyethylene terephthalate using solid catalysts[J].Chem Sus Chem,2023,16:e202300142.

3 Smith R L,Takkellapati S,Riegerix R C.Recycling of plastics in the United States:Plastic material flows and polyethylene terephthalate(PET) recycling processes[J].ACS Sustain Chem Eng,2022,10:2084-2096.

4 Berlino M,Mangano M C,Vittor C D,et al.Effects of microplastics on the functional traits of aquatic benthic organisms:A global-scale meta-analysis[J].Environmental Pollution,2021,285:117174.

5 Lamberti F M,Román-Ramírez L A,Wood J.Recycling of bioplastics:Routes and benefits[J].Journal of Polymers and the Environment,2020,28:2551-2571.

6 Barboza L G A,Vethaak A D,Lavorante B R B O,et al.Marine microplastic debris:An emerging issue for food security,food safety and human health[J].Marine Pollution Bulletin,2018,133:336-348.

7 Jambeck J R,Geyer R,Wilcox C,et al.Plastic waste inputs from land into the ocean[J].Science,2015,347(6223):768-771.

8 Wang J,Yuan X,Deng S,et al.Waste polyethylene terephthalate(PET) plastics-derived activated carbon for CO2capture:A route to a closed carbon loop[J].Green Chemistry,2020,22:6836-6845.

9 Kawai F,Kawabata T,Oda M.Current state and perspectives related to the polyethylene terephthalate hydrolases available for biorecycling[J].ACS Sustainable Chemistry&Engineering,2020,8:8894-8908.

10 Sarda P,Hanan J C,Lawrence J G,et al.Sustainability performance of polyethylene terephthalate,clarifying challenges and opportunities[J].Journal of Polymer Science,2022,60(1):7-31.

11 Arias J J R,Thielemans W.Instantaneous hydrolysis of PET bottles:An efficient pathway for the chemical recycling of condensation polymers[J].Green Chemistry,2021,23:9945-9956.

12 Kang M J,Kim H T,Lee M W,et al.A chemo-microbial hybrid process for the production of 2-pyrone-4,6-dicarboxylic acid as a promising bioplastic monomer from PET waste[J].Green Chemistry,2020,22:3461-3469.

13 Ghasemi M H,Neekzad N,Ajdari F B,et al.Mechanistic aspects of poly(ethylene terephthalate) recycling-toward enabling high quality sustainability decisions in waste management[J].Environmental Science and Pollution Research,2021,28:43074-43101.

14 Singh A,Rorrer N A,Nicholson S R,et al.Techno-economic,life-cycle,and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate)[J].Joule,2021,5:2479-2503.

15 Chen L,Pelton R E O,Smith T M.Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate(PET) bottles[J].Journal of Cleaner Production,2016,137:667-676.

16 Geyer R,Jambeck J R,Law K L.Production,use,and fate of all plastics ever made[J].Science Advances,2017,3(7):e1700782.

17 Benavides P T,Dunn J B,Han J,et al.Exploring comparative energy and environmental benefits of virgin,recycled,and bio-derived PET bottles[J].ACS Sustainable Chemistry&Engineering,2018,6:9725-9733.

18 Ioakeimidis C,Fotopoulou K N,Karapanagioti H K,et al.The degradation potential of PET bottles in the marine environment:An ATR-FTIR based approach[J].Sci Rep,2016,6:23501.

19 Group C W.The new plastics economy:Catalysing action[J].Chemical Weekly,2017(30):62.

20 Ellen Mac Arthur Foundation.The new plastics economy:Rethinking the future of plastics[R].Davos:World Economic Forum,2016.

21 Roy P S,Garnier G G,Allais F F,et al.Strategic approach towards plastic waste valorization:Challenges and promising phemical upcycling possibilities[J].Chem Sus Chem,2021,14:4007-4027.

22 Chen H,Wan K,Zhang Y,et al.Waste to wealth:Chemical recycling and chemical upcycling of waste plastics for a great future[J].Chem Sus Chem,2021,14:4123-4136.

23 Vollmer I,Jenks M J F,Roelands M C P,et al.Beyond mechanical recycling:Giving new life to plastic waste[J].Angewandte Chemie International Edition,2020,59:15402-15423.

24 Martín A J,Mondelli C,Jaydev S D,et al.Catalytic processing of plastic waste on the rise[J].Chem,2021,7:1487-1533.

25 Sang T,Wallis C J D,Hill G,et al.Polyethylene terephthalate degradation under natural and accelerated weathering[J].Onditions,2020,136:109873.

26 Zhang F,Zhao Y,Wang Y,et al.Current technologies for plastic waste treatment:A review[J].Journal of Cleaner Production,2021,282:124523.

27 Garcia J M,Robertson M L.The future of plastics recycling.[J].Science,2017,358:870-872

28 Rahimi A,García J M.Chemical recycling of waste plastics for new materials production[J].Nature Reviews Chemistry,2017,1:0046.

29 Guo Z,Yan N,Lapkin A A.Towards circular economy:Integration of bio-waste into chemical supply chain[J].Current Opinion in Chemical Engineering,2019,26:148-156.

30 Al-Salem S M,Lettieri P,Baeyens J.Recycling and recovery routes of plastic solid waste (PSW):A review[J].Waste Management,2009,29:2625-2643.

31 Ragaert K,Delva L,Geem K V.Mechanical and chemical recycling of solid plastic waste[J].Waste Management,2017,69:24-58.

32 Predel M,Kaminsky W.Pyrolysis of mixed polyolefins in a fluidised-bed reactor and on a pyro-GC/MS to yield aliphatic waxes[J].Polymer Degradation and Stability,2000,70:373-385.

33 Munir D,Irfan M F,Usman M R.Hydrocracking of virgin and waste plastics:A detailed review[J].Renewable and Sustainable Energy Reviews,2018,90:490-515.

34 Gomes T S Visconte L L Y,Pacheco E B A V.Life cycle assessment of polyethylene terephthalate packaging:An overview[J].Journal of Polymers and the Environment,2019,27:533-548.

35 Nakatani J,Fujii M,Moriguchi Y,et al.Life-cycle assessment of domestic and transboundary recycling of postconsumer PET bottles[J].The International Journal of Life Cycle Assessment,2010,15:590-597.

36 Mark L O,Cendejas M C,Hermans I.The use of heterogeneous catalysis in the chemical valorization of plastic waste[J].Chem Sus Chem,2020,13:5808-5836.

37 Britt P F,Coates G W,Winey K I,et al.Report of the basic energy sciences roundtable on chemical upcycling of polymers[R].United States:Medium:ED,2019.

38 Atta A M,Abdel-Raouf M E,Elsaeed S M,et al.Curable resins based on recycled poly(ethylene terephthalate) for coating applications[J].Progress in Organic Coatings,2006,55:50-59.

39 Tawfik M E,Ahmed N M,Eskander S B.Aminolysis of poly(ethylene terephthalate) wastes based on sunlight and utilization of the end product[bis(2-hydroxyethylene)terephthalamide]as an ingredient in the anticorrosive paints for the protection of steel structures[J].Journal of Applied Polymer Science,2011,120:2842-2855.

40 Pingale N D,Shukla S R.Microwave-assisted aminolytic depolymerization of PET waste[J].European Polymer Journal,2009,45:2695-2700.

41 Wei J,Zhu M,Liu B,et al.Hydrodeoxygenation of oxygen-containing aromatic plastic wastes to liquid organic hydrogen carriers[J].Angew Chem Int Ed Engl,2023,62:e202310505.

42 Balaraman E,Gnanaprakasam B,Shimon L J W,et al.Direct hydrogenation of amides to alcohols and amines under mild conditions[J].Journal of the American Chemical Society,2010,132:16756-16758.

43 Lee K,Jing Y,Wang Y,et al.A unified view on catalytic conversion of biomass and waste plastics[J].Nat Rev Chem,2022,6:635-652.

44 Goto M K,Kodama H,Hirose A,et al.Depolymerization of polyethylene terephthalate in supercriticalmethanol[J].Phys.:Condens.Matter,2002,14:11427-11430.

45 Genta M I,Sasaki T,Goto M,et al.Depolymerization mechanism of poly(ethylene terephthalate) insupercritical methanol[J].Ind.Eng.Chem.Res,2005,44:3894-3900.

46 Shojaei B,Abtahi M,Najafi M.Chemical recycling of PET:A stepping‐stone toward sustainability.[J].Polymers for Advanced Technologies,2020,31:2912-2938.

47 Krall E M,Klein T W,Andersen R J,et al.Controlled hydrogenative depolymerization of polyesters and polycarbonates catalyzed by ruthenium(II)PNN pincer complexes[J].Chem Commun (Camb),2014,50:4884-4887.

48 Ito M,Ootsuka T,Watari R,et al.Catalytic hydrogenation of carboxamides and esters by well-defined Cp*Ru complexes bearing a protic amine ligand[J].J Am Chem Soc,2011,133:4240-4242.

49 Ito M,Ikariya T.Catalytic hydrogenation of polar organic functionalities based on Ru-mediated heterolytic dihydrogen cleavage[J].Chemical Communications,2007:5134-5142.

50 Zhang J,Leitus G,Ben-David Y,et al.Efficient homogeneous catalytic hydrogenation of esters to alcohols[J].Angew Chem Int Ed Engl,2006,45:1113-1115.

51 Balaraman E,Fogler E,Milstein D.Efficient hydrogenation of biomass-derived cyclic di-esters to 1,2-diols[J].Chem Commun(Camb),2012,48:1111-1113.

52 Westhues S J I,Klankermayer J.Molecular catalyst systems as key enablers for tailored polyesters and polycarbonate recycling concepts.[J].Science Advance,2018,4:8.

53 Ito T O M,Watari R,Shiibashi A,et al.Catalytic hydrogenation of carboxamides and esters by well-defined Cp*Ru complexes bearing a protic amine ligand.[J].J Am Chem Soc,2011,133:4240-4242.

54 Sharuddin S D A,Abnisa F,Wan Daud W M A,et al.A review on pyrolysis of plastic wastes[J].Energy Conversion and Management,2016,115:308-326.

55 Bavykina A,Kolobov N,Khan I S,et al.Metal-Organic frameworks in heterogeneous catalysis:Recent progress,new trends,and future perspectives.[J].Chemical Reviews,2020,120:8468-8535.

56 Mochizuki S,Kitao T,Uemura T.Controlled polymerizations using metal-organic frameworks.[J].Chem Commun(Camb),2018,54:11843-11856.

57 Wei J,Zhu M,Liu B,et al.Hydrodeoxygenation of oxygen-containing aromatic plastic wastes to lquid organic hydrogen carriers[J].Angewandte Chemie(International ed.in English),2023,62(46):e202310505.

58 Lobbert L,Chheda S,Zheng J,et al.Influence of 1-butene adsorption on the dimerization activity of single metal cations on Ui O-66 nodes[J].J Am Chem Soc,2023,145:1407-1422.

59 Jiao L,Jiang H L.Metal-organic-framework-based single-atom catalysts for energy applications[J].Chem,2019,5:786-804.

60 Jing Y,Dong L,Guo Y,et al.Chemicals from lignin:A review of catalytic conversion involving hydrogen[J].Chem Sus Chem,2020,13:4181-4198.

61 Kim S,Kwon E E,Kim Y T,et al.Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts[J].Green Chemistry,2019,21:3715-3743.

62 Du S,Valla J A,Parnas R S,et al.Conversion of polyethylene terephthalate based waste carpet to benzene-rich Oils through thermal,catalytic,and catalytic steam pyrolysis[J].ACS Sustainable Chemistry&Engineering,2016,4:2852-2860.

63 Diaz-Silvarrey L S,Mc Mahon A,Phan A N.Benzoic acid recovery via waste poly(ethylene terephthalate)(PET)catalytic pyrolysis using sulphated zirconia catalyst[J].Journal of Analytical and Applied Pyrolysis,2018,134:621-631.

64 Kumagai S,Yamasaki R,Kameda T,et al.Catalytic pyrolysis of poly(ethylene terephthalate) in the presence of metal oxides for aromatic hydrocarbon recovery using tandemμ-Reactor-GC/MS[J].Energy&Fuels,2020,34:2492-2500.

65 Mouat A R,Lohr T L,Wegener E C,et al.Reactivity of a carbon-supported single-site molybdenum dioxo catalyst for biodiesel synthesis[J].ACS Catalysis,2016,6:6762-6769.

66 Xiao L P,Wang L,Li H,et al.Catalytic hydrogenolysis of lignins into phenolic compounds over carbon nanotube supported molybdenum oxide[J].ACS Catalysis,2017,7:7535-7542.

67 Junhong F J D,Si R,Sun K J,et al.Synergistic effects for enhanced catalysis in a dual single-atom catalyst[J].ACS Catalysis,2021,11(4):1952-1961.

68 Kratish Y,Li J,Liu S,et al.Polyethylene terephthalate deconstruction catalyzed by a carbon-supported single-site molybdenum-dioxo complex[J].Angew Chem Int Ed Engl,2020,59:19857-19861.

69 Liu J,Li Y,Jia X,et al.Catalytic pyrolysis of poly(ethylene terephthalate) with molybdenum oxides for the production of olefins and terephthalic acid[J].Industrial&Engineering Chemistry Research,2022,61:5054-5065.

70 Zhang J,Yan N.Ni Ag catalysts for selective hydrogenolysis of the lignin C-O bond[J].Particle&Particle Systems Characterization,2016,33:610-619.

71 Zhang J,Sun J,Wang Y.Recent advances in the selective catalytic hydrodeoxygenation of lignin-derived oxygenates to arenes[J].Green Chemistry,2020,22:1072-1098.

72 Chiu C C,Genest A,Borgna A,et al.Hydrodeoxygenation of guaiacol over Ru(0001):A DFT study.[J].ACSCatalysis,2014,4:4178-4188.

73 Shi D,Arroyo-Ramírez L,Vohs J M.The use of bimetallics to control the selectivity for the upgrading of ligninderived oxygenates:Reaction of anisole on Pt and Pt Zn catalysts[J].Journal of Catalysis,2016,340:219-226.

74 Crespos C,Collins M A,Pijper E,et al.Multi-dimensional potential energy surface determination by modified shepard interpolation for a molecule-surface reaction:H2+Pt(111)[J].Chemical Physics Letters,2003,376:566-575.

75 Ma D,Lu S,Liu X,et al.Depolymerization and hydrodeoxygenation of lignin to aromatic hydrocarbons with a Ru catalyst on a variety of Nb-based supports[J].Chinese Journal of Catalysis,2019,40:609-617.

76 Yang F,Liu D,Zhao Y,et al.Size dependence of vapor phase hydrodeoxygenation of m-Cresol on Ni/Si O2catalysts[J].ACS Catalysis,2018,8:1672-1682.

77 Dong L,Lin L,Han X,et al.Breaking the limit of lignin monomer production via cleavage of interunit carboncarbon linkages[J].Chem,2019,5:1521-1536.

78 Shao Y,Xia Q,Dong L,et al.Selective production of arenes via direct lignin upgrading over a niobium-based catalyst[J].Nature Communications,2017,8(1):16104.

79 Sanyal U,Song Y,Singh N,et al.Structure sensitivity in hydrogenation reactions on Pt/C in aqueous‐phase[J].Chem Cat Chem,2018,11:575-582.

80 Xia Q N,Cuan Q,Liu X H,et al.Pd/Nb OPO4 multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans[J].Angew Chem Int Ed Engl,2014,53:9755-9760.

81 Shao Y,Xia Q,Dong L,et al.Selective production of arenes via direct lignin upgrading over a niobium-based catalyst[J].Nat Commun,2017,8:16104.

82 Xia Q,Chen Z,Shao Y,et al.Direct hydrodeoxygenation of raw woody biomass into liquid alkanes[J].Nat Commun,2016,7:11162.

83 Lu S,Jing Y,Feng B,et al.H (2)-free plastic conversion:Converting PET back to BTX by unlocking hidden hydrogen.[J].Chem Sus Chem,2021,14:4242-4250.

84 Jing Y,Wang Y,Furukawa S,et al.Towards the circular economy:Converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst[J].Angew Chem Int Ed Engl,2021,60:5527-5535.

85 Li R,Zeng W,Zhao R,et al.Ti O2 nanoparticle supported Ru catalyst for chemical upcycling of polyethylene terephthalate to alkanes[J].Nano Research,2023,16:12223-12229.

86 Murali V,Kim J R,Park Y K,et al.Water-assisted single-step catalytic hydrodeoxygenation of polyethylene terephthalate into gasoline-and jet fuel-range cycloalkanes over supported Ru catalysts in a biphasic system[J].Green Chemistry,2023,25:8570-8583.

87 Zhang J,Gao M,Wang R,et al.Switching of CO2 hydrogenation selectivity via chlorine poisoning over Ru/Ti O2catalyst[J].Nano Research,2023,16:4786-4792.

88 Valdés-Martínez O U,Díaz de León J N,Santolalla C E,et al.Fundamental study of catalytic functionalities involved in effective C-O cleavage over ru-supported catalysts[J].Industrial&Engineering Chemistry Research,2021,60:18880-18890.

89 Liu X,Jia W,Xu G,et al.Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols over co-based catalysts[J].ACS Sustainable Chemistry&Engineering,2017,5:8594-8601.

90 Oi L E,Choo M Y,Lee H V,et al.Recent advances of titanium dioxide(Ti O2) for green organic synthesis[J].RSCAdvances,2016,6:108741-108754.

91 Yang Y,Hao J,Lv G.Comparative study of catalytic hydrodeoxygenation performance over SBA-15 and Ti O2supported 20 wt%Ni for bio-oil upgrading[J].Fuel,2019,253:630-636.

92 Héroguel F,Nguyen X T,Luterbacher J S.Catalyst support and solvent effects during lignin depolymerization and hydrodeoxygenation[J].ACS Sustainable Chemistry&Engineering,2019,7:16952-16958.

93 Lu M,Du H,Wei B,et al.Catalytic hydrodeoxygenation of guaiacol over palladium catalyst on different titania supports[J].Energy&Fuels,2017,31:10858-10865.

94 Hongkailers S,Jing Y,Wang Y,et al.Recovery of arenes from polyethylene terephthalate (PET) over a Co/Ti O2catalyst[J].Chem Sus Chem,2021,14(19):4330-4339.

95 Ye M,Li Y,Yang Z,et al.Ruthenium/Ti O2-catalyzed hydrogenolysis of polyethylene terephthalate:Reaction pathways dominated by coordination environment[J].Angew Chem Int Ed Engl,2023,62:e202301024.

96 Li R,Wang D.Understanding the structure-performance relationship of active sites at atomic scale[J].Nano Research,2022,15:6888-6923.

97 Zheng X,Li B,Wang Q,et al.Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis[J].Nano Research,2022,15:7806-7839.

98 Han A,Sun W,Wan X,et al.Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance[J].2023,62:e202303185.

99 Gan T,Wang D.Atomically dispersed materials:Ideal catalysts in atomic era[J].Nano Research,2024,17:18-38.

100 Ji S,Chen Y,Wang X,et al.chemical synthesis of single atomic site catalysts[J].Chemical Reviews,2020,120:11900-11955.

101 Wang A,Li J,Zhang T.Heterogeneous single-atom catalysis[J].Nature Reviews Chemistry,2018,2:65-81.

102 Gan T,Y J,Morris D,et al.Electron donation of non-oxide supports boosts O2 activation on nano-platinum catalysts[J].Nature Communications,2021,12:2741.

103 Zhu P,Xiong X,Wang D.Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction[J].Nano Research,2022,15:5792-5815.

104 Zhang Z,Zhu J,Chen S,et al.Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction[J].Angewandte Chemie,2022,135(3):1-8.

105 Zhang Z,Wang J,Ge X,et al.Mixed plastics wastes upcycling with high-stability single-atom Ru catalyst[J].J Am Chem Soc,2023,145:22836-22844.

106 Qiu C,Odarchenko Y,Lezcano-Gonzalez I,et al.Visualising Co nanoparticle aggregation and encapsulation in Co/Ti O2 catalysts and its mitigation through surfactant residues[J].Journal of Catalysis,2023,419:58-67.

107 Takeda Y,Tamura M,Nakagawa Y,et al.Characterization of Re-Pd/Si O2 catalysts for hydrogenation of stearic acid[J].ACS Catalysis,2015,5:7034-7047.

108 Robinson A M,Hensley J E,Medlin J W.Bifunctional catalysts for upgrading of biomass-derived oxygenates:Areview[J].ACS Catalysis,2016,6:5026-5043.

109 Wu G,Zhang N,Dai W,et al.Construction of bifunctional Co/H-ZSM-5 catalysts for the hydrodeoxygenation of stearic acid to diesel-range alkanes[J].Chem Sus Chem,2018,11:2179-2188.

110 Yan N,Ding S.Chemical breakthrough converts cellulose into ethanol[J].Trends in Chemistry,2019,1:457-458.

111 Zhong J,Pérez-Ramírez J,Yan N.Biomass valorisation over polyoxometalate-based catalysts[J].Green Chemistry,2021,23:18-36.

112 Do P T M,Foster A J,Chen J,et al.Bimetallic effects in the hydrodeoxygenation of meta-cresol on γ-Al2O3supported Pt-Ni and Pt-Co catalysts[J].Green Chemistry,2012,14:1388-1397.

113 Shu R,Li R,Liu Y,et al.Enhanced adsorption properties of bimetallic Ru Co catalyst for the hydrodeoxygenation of phenolic compounds and raw lignin-oil[J].Chemical Engineering Science,2020,227:115920.

114 Tran N T T,Uemura Y,Ramli A,et al.Vapor-phase hydrodeoxygenation of lignin-derived bio-oil over Al-MCM-41 supported Pd-Co and Pd-Fe catalysts[J].Molecular Catalysis,2022,523:111435.

115 Hanaor H A D,Sorrell C C.Review of the anatase to rutile phase transformation[J].Journal of Materials Science,2011,46(4):855-874.

116 Ooi X Y,Oi L E,Choo M Y,et al.Efficient deoxygenation of triglycerides to hydrocarbon-biofuel over mesoporous Al2O3-Ti O2 catalyst[J].Fuel Processing Technology,2019,194:106120.

117 Wu P,Lu G,Cai C.Cobalt-molybdenum synergistic catalysis for the hydrogenolysis of terephthalate-based polyesters[J].Green Chemistry,2021,23:8666-8672.

118 Jia W,Xu G,Liu X,et al.Direct selective hydrogenation of fatty acids and jatropha oil to fatty alcohols over cobalt-based catalysts in water[J].Energy&Fuels,2018,32:8438-8446.

119 Zhao H,Jiang Y,Liu H,et al.Direct synthesis of allyl alcohol from glycerol over Co Fe alloy[J].Applied Catalysis B:Environmental,2020,277:119187.

120 Shao Y,Fan M,Sun K,et al.The quantitative conversion of polyethylene terephthalate (PET) and Coca-Cola bottles to p-xylene over Co-based catalysts with tailored activities for deoxygenation and hydrogenation[J].Green Chemistry,2023,25:10513-10529.

121 Shao Y,Sun K,Fan M,et al.Synthesis of a thermally and hydrothermally stable copper-based catalyst via alloying of Cu with Ni and Zn for catalyzing conversion of furfural into cyclopentanone[J].ACS Sustainable Chemistry&Engineering,2022,10:8763-8777.

122 Shao Y,Kong L,Fan M,et al.Synergy between Cu and lewis acidic sites in Cu/Zn-Fe Ox catalysts for the selective conversion of poly(ethylene terephthalate) waste to p-Xylene and ethylene glycol[J].ACS Sustainable Chemistry&Engineering,2024,12:3818-3830.

123 Cheng Z,Zhou W,Lan G,et al.High-performance Cu/Zn O/Al2O3 catalysts for methanol steam reforming with enhanced Cu-Zn O synergy effect via magnesium assisted strategy[J].Journal of Energy Chemistry,2021,63:550-557.

124 Gallegos M V,Reimers W G,Luna C R,et al.Theoretical analysis of polyethylene terephthalate(PET) adsorption on Co and Mn-doped Zn O(000-1)[J].Molecular Catalysis,2022,531:112688.

125 Shao Y,Wu J,Zheng Z,et al.Alloying cobalt in Co-Fe-Al catalyst for achieving the selective conversion of furfural to cyclopentanone[J].Renewable Energy,2022,195:957-971.

126 Lende A.B.,Bhattacharjee S.and Tan C.-S.On-water hydrogenation of polyethylene terephthalate to environmentally friendly polyester by the catalyst Rh2.5Pt2.5/SBA-15[J].ACS Sustainable Chemistry&Engineering,2021,9(21):7224-7234.

127 Cui J,Tan J,Zhu Y,et al.Aqueous hydrogenation of levulinic acid to 1,4-pentanediol over Mo-modified Ru/activated carbon catalyst[J].Chem Sus Chem,2018,11:1316-1320.

128 Pan H B,Wai C M.Facile sonochemical synthesis of carbon nanotube-supported bimetallic Pt-Rh nanoparticles for room temperature hydrogenation of arenes[J].New Journal of Chemistry,2011,35:1649-1660.

129 Park J Y,Zhang Y,Joo S H,et al.Size effect of Rh Pt bimetallic nanoparticles in catalytic activity of CO oxidation:Role of surface segregation[J].Catalysis Today,2012,181:133-137.

130 Sarkari M,Darrat I,Knutson B L.Generation of microparticles using CO2 and CO2-philic antisolvents[J].AICh EJournal,2000,46:1850-1859.

131 Yu W,Hsu Y P,Tan C S.Synthesis of rhodium-platinum bimetallic catalysts supported on SBA-15 by chemical fluid deposition for the hydrogenation of terephthalic acid in water[J].Applied Catalysis B:Environmental,2016,196:185-192.

132 Shu R,Lin B,Wang C,et al.Upgrading phenolic compounds and bio-oil through hydrodeoxygenation using highly dispersed Pt/Ti O2 catalyst[J].Fuel,2019,239:1083-1090.

133 Zhao C,Lercher J A.Selective hydrodeoxygenation of lignin-derived phenolic monomers and dimers to cycloalkanes on Pd/C and HZSM-5 catalysts[J].Chem Cat Chem,2012,4:64-68.

134 Cheng C,Li P,Yu W,et al.Nonprecious metal/bimetallic catalytic hydrogenolysis of lignin in a mixed-solvent system[J].ACS Sustainable Chemistry&Engineering,2020,8:16217-16228.

135 Feng Y,Long S,Tang X,et al.Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion[J].Chem Soc Rev,2021,50:6042-6093.

136 Wu P.,Lu G.and Cai C.Cobalt-molybdenum synergistic catalysis for the hydrogenolysis of terephthalate-based polyesters[J].Green Chemistry,2021,23(21):8666-8672

137 Lende A B,Bhattacharjee S,Tan C S.Hydrogenation of polyethylene terephthalate to environmentally friendly polyester over vulcan XC-72 carbon supported Rh-Pt bimetallic catalyst[J].Catalysis Today,2022,388:117-124.

138 Jing Y,Wang Y,Furukawa S,et al.Towards the circular economy:Converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst[J].Angewandte Chemie International Edition,2021,60:5527-5535.

139 Kratish Y,Marks T J.Efficient polyester hydrogenolytic deconstruction via tandem catalysis[J].Angew Chem Int Ed Engl,2022,61:e202112576.

140 Tang C W,Chen Y J,Yeh C T,et al.Reforming of methanol to produce hydrogen over the Au/Zn O catalyst[J].International Journal of Hydrogen Energy,2021,46:80-88.

141 Tang H,Li N,Li G,et al.Synthesis of gasoline and jet fuel range cycloalkanes and aromatics from poly(ethylene terephthalate) waste[J].Green Chemistry,2019,21:2709-2719.

142 Gao Z,Ma B,Chen S,et al.Converting waste PET plastics into automobile fuels and antifreeze components[J].Nature Communications,2022,13:3343.

143 Liu H,Zhang J,Gu J,et al.Mechanistic insight into the hydrogen transfer pathway for selective upcycling of PETto arenes.[J].Journal of Cleaner Production,2023,425:138924.

144 Cheng J,Xie J,Xi Y,et al.Selective upcycling of polyethylene terephthalate towards high-valued oxygenated chemical methyl p-methyl benzoate using a Cu/Zr O2 catalyst[J].Angewandte Chemie,2024,63:e202319896.

145 Vollmer I,Jenks M J F,Mayorga González R,et al.Plastic waste conversion over a refinery waste catalyst[J].Angewandte Chemie,2021,60:16101-16108.

基本信息:

DOI:10.16026/j.cnki.iea.2024010018

中图分类号:X705

引用信息:

[1]邹雨翀,陈伟鹏,麦耀舜等.废弃PET催化氢解材料[J].离子交换与吸附,2025,41(01):27-45.DOI:10.16026/j.cnki.iea.2024010018.

基金信息:

国家自然科学基金(基金号22378138)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文