2024 05 v.40 366-375
燃料电池用高性能耐高温质子交换膜的研究进展
基金项目(Foundation):
国家自然科学基金项目(基金号51603031)
邮箱(Email):
yjs@mail.neu.edu.cn.;
DOI:
10.16026/j.cnki.iea.2024050366
中文作者单位:
东北大学理学院化学系;
摘要(Abstract):
在120~200℃的操作温度范围内,高温质子交换膜燃料电池(HT-PEMFC)表现出了诸多优势,包括较快的电极反应动力学、较高的一氧化碳(CO)耐受性以及简化的热和水管理系统。HT-PEMFC的核心材料之一是高温质子交换膜(HT-PEM),其性能直接决定了燃料电池的整体表现及使用寿命。目前,以磷酸(PA)掺杂聚苯并咪唑(PBI)膜为代表的HT-PEM受到了广泛关注。文章首先阐述了PA掺杂型HT-PEM的传质机理,继而结合HT-PEM的发展历史,系统地总结了当前HT-PEM的主要类别。然后详细讨论了基于PBI的HT-PEM、含有主链碱性基团的非PBI类HT-PEM以及侧链含有碱性基团的HT-PEM的结构特性及其对性能的影响规律。最后,概述了HT-PEM领域当前面临的主要问题与挑战,旨在为高性能、低成本HT-PEM的设计与开发提供有价值的参考和启示。
关键词(KeyWords):
电解质膜;;燃料电池;;耐高温;;高性能
115 | 0 | 14 |
下载次数 | 被引频次 | 阅读次数 |
参考文献
1 Ueckerdt F, Bauer C, Dirnaichner A, Everall J, Sacchi R, Luderer G. Potential and risks of hydrogen-based e-fuels in climate change mitigation[J]. Nature Climate Change, 2021, 11(5):384-393.
2 Alharbi S S, Al Mamun M, Boubaker S, Rizvi S K A. Green finance and renewable energy:a worldwide evidence[J]. Energy Economics, 2023, 118:106499.
3 Staffell I, Scamman D, Abad A V, Balcombe P, Dodds P E, Ekins P, Shah N, Ward K R. The role of hydrogen and fuel cells in the global energy system[J]. Energy&Environmental Science, 2019, 12(2):463-491.
4 Qu E, Hao X, Xiao M, Han D, Huang S, Huang Z, Wang S, Meng Y. Proton exchange membranes for high temperature proton exchange membrane fuel cells:challenges and perspectives[J]. Journal of Power Sources,2022, 533:231386.
5 Yazili D, Marini E, Saatkamp T, Münchinger A, de Wild T, Gubler L, Titvinidze G, Schuster M, Schare C, J?rissen L. Sulfonated poly(phenylene sulfone)blend membranes finding their way into proton exchange membrane fuel cells[J]. Journal of Power Sources, 2023, 563:232791.
6 乔宗文.侧链型磺化聚砜质子交换膜构-效关系的研究[J].离子交换与吸附, 2019, 35(6):530-540.
7 Seselj N, Aili D, Celenk S, Cleemann L N, Hjuler H A, Jensen J O, Azizi K, Li Q. Performance degradation and mitigation of high temperature polybenzimidazole-based polymer electrolyte membrane fuel cells[J]. Chemical Society Reviews, 2023, 52(12):4046-4070.
8 Prykhodko Y, Fatyeyeva K, Hespel L, Marais S. Progress in hybrid composite Nafion?-based membranes for proton exchange fuel cell application[J]. Chemical Engineering Journal, 2021, 409:127329.
9 Haider R, Wen Y, Ma Z F, Wilkinson D P, Zhang L, Yuan X, Song S, Zhang J. High temperature proton exchange membrane fuel cells:progress in advanced materials and key technologies[J]. Chem Soc Rev, 2021, 50(2):1138-1187.
10 Zhang J, Xie Z, Zhang J, Tang Y, Song C, Navessin T, Shi Z, Song D, Wang H, Wilkinson D P, Liu Z S, Holdcroft S. High temperature PEM fuel cells[J]. Journal of Power Sources, 2006, 160(2):872-891.
11 Xiao M, Gao L, Wang Y, Wang X, Zhu J, Jin Z, Liu C, Chen H, Li G, Ge J, He Q, Wu Z, Chen Z, Xing W.Engineering energy level of metal center:Ru single-atom site for efficient and durable oxygen reduction catalysis[J].Journal of the American Chemical Society, 2019, 141(50):19800-19806.
12 Li Q, He R, Gao J A, Jensen J O, Bjerrum N J.The CO poisoning effect in PEMFCs operational at temperatures up to 200℃[J]. Journal of the Electrochemical Society, 2003, 150(12):A1599.
13 Hogarth W H J, Diniz da Costa J C, Lu G Q. Solid acid membranes for high temperature(140℃)proton exchange membrane fuel cells[J]. Journal of Power Sources, 2005, 142(1):223-237.
14 Shao Y, Yin G, Wang Z, Gao Y. Proton exchange membrane fuel cell from low temperature to high temperature:material challenges[J]. Journal of Power Sources, 2007, 167(2):235-242.
15 项睿.燃料电池用聚合物质子交换膜专利技术分析[J].离子交换与吸附,2015, 31(4):376-384.
16 Zhang J, Aili D, Lu S, Li Q, Jiang S P. Advancement toward polymer electrolyte membrane fuel cells at elevated temperatures[J]. Research, 2020, 2020:9089405.
17 Agmon N. The Gr?tthuss mechanism[J]. Chemical Physics Letters, 1995, 244(5):456-462.
18 Vil?iauskas L, Tuckerman M E, Bester G, Paddison S J, Kreuer K D. The mechanism of proton conduction in phosphoric acid[J]. Nature Chemistry, 2012, 4(6):461-466.
19 Maiti T K, Singh J, Majhi J, Ahuja A, Maiti S, Dixit P, Bhushan S, Bandyopadhyay A, Chattopadhyay S. Advances in polybenzimidazole based membranes for fuel cell applications that overcome Nafion membranes constraints[J].Polymer, 2022, 255:125151.
20 Ma Y L, Wainright J S, Litt M H, Savinell R F. Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2004, 151(1):A8.
21 He R, Li Q, Xiao G, Bjerrum N J. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors[J]. Journal of Membrane Science, 2003, 226(1):169-184.
22 Wainright J S, Wang J T, Weng D, Savinell R F, Litt M. Acid-doped polybenzimidazoles:a new polymer electrolyte[J]. Journal of the Electrochemical Society, 1995, 142(7):L121.
23 Gourdoupi N, Andreopoulou A, Deimede V, Kallitsis J. Novel proton-conducting polyelectrolyte composed of an aromatic polyether containing main-chain pyridine units for fuel cell applications[J]. Chemistry of Material, 2003,15(26):5044-5050.
24 Jin Y, Wang T, Che X,Dong J,Li Q,Yang J.Poly(arylene pyridine)s:new alternative materials for high temperature polymer electrolyte fuel cells[J]. Journal of Power Sources, 2022, 526:231131.
25 Xu X,Wang H, Lu S,Guo Z,Rao S,Xiu R,Xiang Y.A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone)blend membrane for high-temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2015, 286:458-463.
26 Ren X, Li H, Liu K, Lu H, Yang J, He R. Preparation and investigation of reinforced PVP blend membranes for high temperature polymer electrolyte membranes[J]. Fibers and Polymers, 2018, 19(12):2449-2457.
27 Bai H, Peng H, Xiang Y, Zhang J, Wang H, Lu S, Zhuang L.Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells[J]. Journal of Power Sources, 2019, 443:227219.
28 Jin Y, Wang T, Che X, Dong J, Liu R, Yang J. New high-performance bulky N-heterocyclic group functionalized poly(terphenyl piperidinium)membranes for HT-PEMFC applications[J]. Journal of Membrane Science, 2022, 641:119884.
29 Zhou S B, Guan J, Li Z, Huang L, Zheng J, Li S, Zhang S. Alkaline polymers of intrinsic microporosity:highconduction and low-loss anhydrous proton exchange membranes for energy conversion[J]. Journal of Materials Chemistry A, 2021, 9(7):3925-3930.
30 Mu T, Wang L, Wang Q, Wu Y, Jannasch P, Yang J. High-performance imidazole-containing polymers for applications in high temperature polymer electrolyte membrane fuel cells[J]. Journal of Energy Chemistry, 2024, 98:512-523.
31 Tang H, Geng K,Wu L,Liu J,Chen Z,You W,Yan F,Guiver M D,Li N W. Fuel cells with an operational range of-20℃to 200℃enabled by phosphoric acid-doped intrinsically ultramicroporous membranes[J]. Nature Energy,2022, 7(2):153-162.
32 Wang T, Jin Y, Mu T, Wang T, Yang J. Tr?ger's base polymer blended with poly(ether ketone cardo)for high temperature proton exchange membrane fuel cell applications[J]. Journal of Membrane Science, 2022, 654:120539.
33 Li M, Scott K, Wu X. A poly(R1R2R3)-N+/H3PO4 composite membrane for phosphoric acid polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2009, 194(2):811-814.
34 Lee K S, Spendelow J S, Choe Y K, Fujimoto C, Kim Y S. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs[J]. Nature Energy, 2016, 1(9):16120.
35 Wang Q, Wang L, Zhang M, Peng Z, Lu Y, Lv P, Yang J. Preparation of novel membranes with multiple hydrogen bonding sites andπ-conjugated structure for high temperature proton exchange membrane fuel cells[J]. Chemical Communications, 2024, 60(40):5318-5321.
36 Yang J, Li Q, Jensen J O, Pan C, Cleemann L N, Bjerrum N J, He R. Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells[J]. Journal of Power Sources,2012, 205:114-121.
37 Ju Q, Tang H, Chao G, Guo T, Geng K, Li N. Performance and stability of ether-free high temperature proton exchange membranes with tunable pendent imidazolium groups[J]. Journal of Materials Chemistry A, 2022,10(47):25295-25306.
38 Aili D, Yang J, Jankova K, Henkensmeier D, Li Q. From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolides[J]. Journal of Materials Chemistry A, 2020, 8(26):12854-12886.
39 Yu B, Shuanjin W, Min X, Yuezhong M, Chengxin W. Phosphoric acid based proton exchange membranes for high temperature proton exchange membrane fuel cells[J]. Progress in Chemistry, 2021, 33(3):426.
40 李金晟,葛君杰,刘长鹏,邢巍.燃料电池高温质子交换膜研究进展[J].化工进展, 2021, 40(9):4894-4903.
41 Li J, Li X, Zhao Y, Lu W, Shao Z, Yi B. High-temperature proton-exchange-membrane fuel cells using an ethercontaining polybenzimidazole membrane as electrolyte[J]. ChemSusChem, 2012, 5(5):896-900.
42 He D, Liu G, Wang A, Ji W, Wu J, Tang H, Lin W, Zhang T, Zhang H. Alkali-free quaternized polybenzimidazole membranes with high phosphoric acid retention ability for high temperature proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2022, 650:120442.
43 Yang J, Li Q, Cleemann L N, Xu C, Jensen J O, Pan C, Bjerrum N J, He R. Synthesis and properties of poly(aryl sulfone benzimidazole)and its copolymers for high temperature membrane electrolytes for fuel cells[J]. Journal of Materials Chemistry, 2012, 22(22):11185-11195.
44 Chuang S W, Hsu L C, Liu Y H. Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2007,305(1):353-363.
45 Yang J, Aili D, Li Q, Cleemann L N, Jensen J O, Bjerrum N J, He R. Covalently cross-linked sulfone polybenzimidazole membranes with poly(vinylbenzyl chloride)for fuel cell applications[J]. ChemSusChem, 2013,6(2):275-282.
46 Yu S, Benicewicz B C. Synthesis and properties of functionalized polybenzimidazoles for high-temperature PEMFCs[J]. Macromolecules, 2009, 42(22):8640-8648.
47 Yang J, Xu Y, Zhou L, Che Q, He R, Li Q. Hydroxyl pyridine containing polybenzimidazole membranes for proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2013, 446:318-325.
48 Mader J A, Benicewicz B C. Sulfonated polybenzimidazoles for high temperature PEM fuel cells[J].Macromolecules, 2010, 43(16):6706-6715.
49 Kerres J A. Blended and cross-linked ionomer membranes for application in membrane fuel cells[J]. Fuel Cells,2005, 5(2):230-247.
50 Joseph D, Krishnan N N, Henkensmeier D, Jang J H, Choi S H, Kim H-J, Han J, Nam S W.Thermal crosslinking of PBI/sulfonated polysulfone based blend membranes[J]. Journal of Materials Chemistry A, 2017, 5(1):409-417.
51 Daletou M, Gourdoupi N, Kallitsis J. Proton conducting membranes based on blends of PBI with aromatic polyethers containing pyridine units[J]. Journal of Membrane Science, 2005, 252(1/2):115-122.
52 Charalampopoulos C, Kallitsis K J, Anastasopoulos C, Daletou M K, Neophytides S G, Andreopoulou A K,Kallitsis J K. Crosslinked polymer electrolytes of high pyridine contents for HT-PEM fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(60):35053-35063.
53 Olvera L I, Guzmán-Gutiérrez M T, Zolotukhin M G, Fomine S, Cárdenas J, Ruiz-Trevi?o F A, Villers D,Ezquerra T A, Prokhorov E. Novel high molecular weight aromatic fluorinated polymers from one-pot, metal-free step polymerizations[J]. Macromolecules, 2013, 46(18):7245-7256.
54 李婷婷,李海宾,刘炳辉,赵成吉,李昊龙.主链全碳型芳基聚合物质子交换膜[J].化学进展, 2023, 35(11):1559-1578.
55 Mancilla E C, Hernández-Martínez H, Zolotukhin M G, Ruiz-Trevi?o F A, González-Díaz M O, Cardenas J,Scherf U. POXINAR membrane family for gas separation[J]. Industrial&Engineering Chemistry Research, 2019,58(33):15280-15287.
56 Olsson J S, Pham T H, Jannasch P. Poly(arylene piperidinium)hydroxide ion exchange membranes:synthesis,alkaline stability, and conductivity[J]. Advanced Functional Materials, 2018, 28(2):1702758.1.
57 Wang J, Zhao Y, Setzler B P, Rojas-Carbonell S, Ben Yehuda C, Amel A, Page M, Wang L, Hu K, Shi L,Gottesfeld S, Xu B, Yan Y. Poly(aryl piperidinium)membranes and ionomers for hydroxide exchange membrane fuel cells[J]. Nature Energy, 2019, 4(5):392-398.
58 Che X, Wang L, Wang T, Dong J,Yang J. The effect of grafted alkyl side chains on the properties of poly(terphenyl piperidinium)based high temperature proton exchange membranes[J]. Industrial Chemistry&Materials, 2023,1(4):516-525.
59 Lv R, Jin S, Li L, Wang Q, Wang L, Wang J, Yang J. The influence of comonomer structure on properties of poly(aromatic pyridine)copolymer membranes for HT-PEMFCs[J]. Journal of Membrane Science, 2024, 701:122703.
60 Shi N, Wang G, Wang Q, Wang L, Li Q, Yang J. Acid doped branched poly(biphenyl pyridine)membranes for high temperature proton exchange membrane fuel cells and vanadium redox flow batteries[J]. Chemical Engineering Journal, 2024, 489:151121.
61 Zhao W, Xu X, Bai H, Zhang J, Lu S, Xiang Y. Self-crosslinked polyethyleneimine-polysulfone membrane for high temperature proton exchange membrane[J]. Acta Chimica Sinica, 2020, 78(1):69.
62 Jin Y, Liu R, Che X, Wang T, Yang J. New high temperature polymer electrolyte membranes based on poly(ethylene imine)crosslinked poly(ether ketone cardo)[J]. Journal of The Electrochemical Society, 2021, 168(5):054524.
63 Guo Z, Xiu R, Lu S, Xu X, Yang S, Xiang Y. Submicro-pore containing poly(ether sulfones)/polyvinylpyrrolidone membranes for high-temperature fuel cell applications[J]. Journal of Materials Chemistry A, 2015, 3(16):8847-8854.
64 Yang J, Wang J, Liu C, Gao L, Xu Y, Che Q, He R. Influences of the structure of imidazolium pendants on the properties of polysulfone-based high temperature proton conducting membranes[J]. Journal of Membrane Science,2015, 493:80-87.
65 Liu R, Wang J, Che X, Wang T, Aili D, Li Q, Yang J. Facile synthesis and properties of poly(ether ketone cardo)s bearing heterocycle groups for high temperature polymer electrolyte membrane fuel cells[J]. Journal of Membrane Science, 2021, 636:119584.
66 Liu R, Liu M, Wu S, Che X, Dong J, Yang J. Assessing the influence of various imidazolium groups on the properties of poly(vinyl chloride)based high temperature proton exchange membranes[J]. European Polymer Journal, 2020, 137:109948.
67 Liu R, Dai Y, Li J, Chen X, Pan C, Yang J, Li Q. 1-(3-Aminopropyl)imidazole functionalized poly(vinyl chloride)for high temperature proton exchange membrane fuel cell applications[J]. Journal of Membrane Science, 2021,620:118873.
68 Kreuer K D. Ion conducting membranes for fuel cells and other electrochemical devices[J]. Chemistry of Materials, 2014, 26(1):361-380.
69 Tang H, Geng K, Hao J, Zhang X, Shao Z, Li N. Properties and stability of quaternary ammonium-biphosphate ion-pair poly(sulfone)s high temperature proton exchange membranes for H2/O2 fuel cells[J]. Journal of Power Sources, 2020, 475:228521.
70 Yang J S, Cleemann L N, Steenberg T, Terkelsen C, Li Q, Jensen J O, Hjuler H, Bjerrum N J, He R. High molecular weight polybenzimidazole membranes for high temperature PEMFC[J]. Fuel Cells, 2014, 14(1):7-15.
71 Wang P, Liu Z, Li X, Peng J, Hu W, Liu B. Toward enhanced conductivity of high-temperature proton exchange membranes:development of novel PIM-1 reinforced PBI alloy membranes[J]. Chemical Communications, 2019,55(46):6491-6494.
72 Tang H, Gao J, Wang Y, Li N, Geng K. Phosphoric-acid retention in high-temperature proton-exchange membranes[J].Chemistry-A European Journal, 2022, 28(70):e202202064.
2 Alharbi S S, Al Mamun M, Boubaker S, Rizvi S K A. Green finance and renewable energy:a worldwide evidence[J]. Energy Economics, 2023, 118:106499.
3 Staffell I, Scamman D, Abad A V, Balcombe P, Dodds P E, Ekins P, Shah N, Ward K R. The role of hydrogen and fuel cells in the global energy system[J]. Energy&Environmental Science, 2019, 12(2):463-491.
4 Qu E, Hao X, Xiao M, Han D, Huang S, Huang Z, Wang S, Meng Y. Proton exchange membranes for high temperature proton exchange membrane fuel cells:challenges and perspectives[J]. Journal of Power Sources,2022, 533:231386.
5 Yazili D, Marini E, Saatkamp T, Münchinger A, de Wild T, Gubler L, Titvinidze G, Schuster M, Schare C, J?rissen L. Sulfonated poly(phenylene sulfone)blend membranes finding their way into proton exchange membrane fuel cells[J]. Journal of Power Sources, 2023, 563:232791.
6 乔宗文.侧链型磺化聚砜质子交换膜构-效关系的研究[J].离子交换与吸附, 2019, 35(6):530-540.
7 Seselj N, Aili D, Celenk S, Cleemann L N, Hjuler H A, Jensen J O, Azizi K, Li Q. Performance degradation and mitigation of high temperature polybenzimidazole-based polymer electrolyte membrane fuel cells[J]. Chemical Society Reviews, 2023, 52(12):4046-4070.
8 Prykhodko Y, Fatyeyeva K, Hespel L, Marais S. Progress in hybrid composite Nafion?-based membranes for proton exchange fuel cell application[J]. Chemical Engineering Journal, 2021, 409:127329.
9 Haider R, Wen Y, Ma Z F, Wilkinson D P, Zhang L, Yuan X, Song S, Zhang J. High temperature proton exchange membrane fuel cells:progress in advanced materials and key technologies[J]. Chem Soc Rev, 2021, 50(2):1138-1187.
10 Zhang J, Xie Z, Zhang J, Tang Y, Song C, Navessin T, Shi Z, Song D, Wang H, Wilkinson D P, Liu Z S, Holdcroft S. High temperature PEM fuel cells[J]. Journal of Power Sources, 2006, 160(2):872-891.
11 Xiao M, Gao L, Wang Y, Wang X, Zhu J, Jin Z, Liu C, Chen H, Li G, Ge J, He Q, Wu Z, Chen Z, Xing W.Engineering energy level of metal center:Ru single-atom site for efficient and durable oxygen reduction catalysis[J].Journal of the American Chemical Society, 2019, 141(50):19800-19806.
12 Li Q, He R, Gao J A, Jensen J O, Bjerrum N J.The CO poisoning effect in PEMFCs operational at temperatures up to 200℃[J]. Journal of the Electrochemical Society, 2003, 150(12):A1599.
13 Hogarth W H J, Diniz da Costa J C, Lu G Q. Solid acid membranes for high temperature(140℃)proton exchange membrane fuel cells[J]. Journal of Power Sources, 2005, 142(1):223-237.
14 Shao Y, Yin G, Wang Z, Gao Y. Proton exchange membrane fuel cell from low temperature to high temperature:material challenges[J]. Journal of Power Sources, 2007, 167(2):235-242.
15 项睿.燃料电池用聚合物质子交换膜专利技术分析[J].离子交换与吸附,2015, 31(4):376-384.
16 Zhang J, Aili D, Lu S, Li Q, Jiang S P. Advancement toward polymer electrolyte membrane fuel cells at elevated temperatures[J]. Research, 2020, 2020:9089405.
17 Agmon N. The Gr?tthuss mechanism[J]. Chemical Physics Letters, 1995, 244(5):456-462.
18 Vil?iauskas L, Tuckerman M E, Bester G, Paddison S J, Kreuer K D. The mechanism of proton conduction in phosphoric acid[J]. Nature Chemistry, 2012, 4(6):461-466.
19 Maiti T K, Singh J, Majhi J, Ahuja A, Maiti S, Dixit P, Bhushan S, Bandyopadhyay A, Chattopadhyay S. Advances in polybenzimidazole based membranes for fuel cell applications that overcome Nafion membranes constraints[J].Polymer, 2022, 255:125151.
20 Ma Y L, Wainright J S, Litt M H, Savinell R F. Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2004, 151(1):A8.
21 He R, Li Q, Xiao G, Bjerrum N J. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors[J]. Journal of Membrane Science, 2003, 226(1):169-184.
22 Wainright J S, Wang J T, Weng D, Savinell R F, Litt M. Acid-doped polybenzimidazoles:a new polymer electrolyte[J]. Journal of the Electrochemical Society, 1995, 142(7):L121.
23 Gourdoupi N, Andreopoulou A, Deimede V, Kallitsis J. Novel proton-conducting polyelectrolyte composed of an aromatic polyether containing main-chain pyridine units for fuel cell applications[J]. Chemistry of Material, 2003,15(26):5044-5050.
24 Jin Y, Wang T, Che X,Dong J,Li Q,Yang J.Poly(arylene pyridine)s:new alternative materials for high temperature polymer electrolyte fuel cells[J]. Journal of Power Sources, 2022, 526:231131.
25 Xu X,Wang H, Lu S,Guo Z,Rao S,Xiu R,Xiang Y.A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone)blend membrane for high-temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2015, 286:458-463.
26 Ren X, Li H, Liu K, Lu H, Yang J, He R. Preparation and investigation of reinforced PVP blend membranes for high temperature polymer electrolyte membranes[J]. Fibers and Polymers, 2018, 19(12):2449-2457.
27 Bai H, Peng H, Xiang Y, Zhang J, Wang H, Lu S, Zhuang L.Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells[J]. Journal of Power Sources, 2019, 443:227219.
28 Jin Y, Wang T, Che X, Dong J, Liu R, Yang J. New high-performance bulky N-heterocyclic group functionalized poly(terphenyl piperidinium)membranes for HT-PEMFC applications[J]. Journal of Membrane Science, 2022, 641:119884.
29 Zhou S B, Guan J, Li Z, Huang L, Zheng J, Li S, Zhang S. Alkaline polymers of intrinsic microporosity:highconduction and low-loss anhydrous proton exchange membranes for energy conversion[J]. Journal of Materials Chemistry A, 2021, 9(7):3925-3930.
30 Mu T, Wang L, Wang Q, Wu Y, Jannasch P, Yang J. High-performance imidazole-containing polymers for applications in high temperature polymer electrolyte membrane fuel cells[J]. Journal of Energy Chemistry, 2024, 98:512-523.
31 Tang H, Geng K,Wu L,Liu J,Chen Z,You W,Yan F,Guiver M D,Li N W. Fuel cells with an operational range of-20℃to 200℃enabled by phosphoric acid-doped intrinsically ultramicroporous membranes[J]. Nature Energy,2022, 7(2):153-162.
32 Wang T, Jin Y, Mu T, Wang T, Yang J. Tr?ger's base polymer blended with poly(ether ketone cardo)for high temperature proton exchange membrane fuel cell applications[J]. Journal of Membrane Science, 2022, 654:120539.
33 Li M, Scott K, Wu X. A poly(R1R2R3)-N+/H3PO4 composite membrane for phosphoric acid polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2009, 194(2):811-814.
34 Lee K S, Spendelow J S, Choe Y K, Fujimoto C, Kim Y S. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs[J]. Nature Energy, 2016, 1(9):16120.
35 Wang Q, Wang L, Zhang M, Peng Z, Lu Y, Lv P, Yang J. Preparation of novel membranes with multiple hydrogen bonding sites andπ-conjugated structure for high temperature proton exchange membrane fuel cells[J]. Chemical Communications, 2024, 60(40):5318-5321.
36 Yang J, Li Q, Jensen J O, Pan C, Cleemann L N, Bjerrum N J, He R. Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells[J]. Journal of Power Sources,2012, 205:114-121.
37 Ju Q, Tang H, Chao G, Guo T, Geng K, Li N. Performance and stability of ether-free high temperature proton exchange membranes with tunable pendent imidazolium groups[J]. Journal of Materials Chemistry A, 2022,10(47):25295-25306.
38 Aili D, Yang J, Jankova K, Henkensmeier D, Li Q. From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolides[J]. Journal of Materials Chemistry A, 2020, 8(26):12854-12886.
39 Yu B, Shuanjin W, Min X, Yuezhong M, Chengxin W. Phosphoric acid based proton exchange membranes for high temperature proton exchange membrane fuel cells[J]. Progress in Chemistry, 2021, 33(3):426.
40 李金晟,葛君杰,刘长鹏,邢巍.燃料电池高温质子交换膜研究进展[J].化工进展, 2021, 40(9):4894-4903.
41 Li J, Li X, Zhao Y, Lu W, Shao Z, Yi B. High-temperature proton-exchange-membrane fuel cells using an ethercontaining polybenzimidazole membrane as electrolyte[J]. ChemSusChem, 2012, 5(5):896-900.
42 He D, Liu G, Wang A, Ji W, Wu J, Tang H, Lin W, Zhang T, Zhang H. Alkali-free quaternized polybenzimidazole membranes with high phosphoric acid retention ability for high temperature proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2022, 650:120442.
43 Yang J, Li Q, Cleemann L N, Xu C, Jensen J O, Pan C, Bjerrum N J, He R. Synthesis and properties of poly(aryl sulfone benzimidazole)and its copolymers for high temperature membrane electrolytes for fuel cells[J]. Journal of Materials Chemistry, 2012, 22(22):11185-11195.
44 Chuang S W, Hsu L C, Liu Y H. Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2007,305(1):353-363.
45 Yang J, Aili D, Li Q, Cleemann L N, Jensen J O, Bjerrum N J, He R. Covalently cross-linked sulfone polybenzimidazole membranes with poly(vinylbenzyl chloride)for fuel cell applications[J]. ChemSusChem, 2013,6(2):275-282.
46 Yu S, Benicewicz B C. Synthesis and properties of functionalized polybenzimidazoles for high-temperature PEMFCs[J]. Macromolecules, 2009, 42(22):8640-8648.
47 Yang J, Xu Y, Zhou L, Che Q, He R, Li Q. Hydroxyl pyridine containing polybenzimidazole membranes for proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2013, 446:318-325.
48 Mader J A, Benicewicz B C. Sulfonated polybenzimidazoles for high temperature PEM fuel cells[J].Macromolecules, 2010, 43(16):6706-6715.
49 Kerres J A. Blended and cross-linked ionomer membranes for application in membrane fuel cells[J]. Fuel Cells,2005, 5(2):230-247.
50 Joseph D, Krishnan N N, Henkensmeier D, Jang J H, Choi S H, Kim H-J, Han J, Nam S W.Thermal crosslinking of PBI/sulfonated polysulfone based blend membranes[J]. Journal of Materials Chemistry A, 2017, 5(1):409-417.
51 Daletou M, Gourdoupi N, Kallitsis J. Proton conducting membranes based on blends of PBI with aromatic polyethers containing pyridine units[J]. Journal of Membrane Science, 2005, 252(1/2):115-122.
52 Charalampopoulos C, Kallitsis K J, Anastasopoulos C, Daletou M K, Neophytides S G, Andreopoulou A K,Kallitsis J K. Crosslinked polymer electrolytes of high pyridine contents for HT-PEM fuel cells[J]. International Journal of Hydrogen Energy, 2020, 45(60):35053-35063.
53 Olvera L I, Guzmán-Gutiérrez M T, Zolotukhin M G, Fomine S, Cárdenas J, Ruiz-Trevi?o F A, Villers D,Ezquerra T A, Prokhorov E. Novel high molecular weight aromatic fluorinated polymers from one-pot, metal-free step polymerizations[J]. Macromolecules, 2013, 46(18):7245-7256.
54 李婷婷,李海宾,刘炳辉,赵成吉,李昊龙.主链全碳型芳基聚合物质子交换膜[J].化学进展, 2023, 35(11):1559-1578.
55 Mancilla E C, Hernández-Martínez H, Zolotukhin M G, Ruiz-Trevi?o F A, González-Díaz M O, Cardenas J,Scherf U. POXINAR membrane family for gas separation[J]. Industrial&Engineering Chemistry Research, 2019,58(33):15280-15287.
56 Olsson J S, Pham T H, Jannasch P. Poly(arylene piperidinium)hydroxide ion exchange membranes:synthesis,alkaline stability, and conductivity[J]. Advanced Functional Materials, 2018, 28(2):1702758.1.
57 Wang J, Zhao Y, Setzler B P, Rojas-Carbonell S, Ben Yehuda C, Amel A, Page M, Wang L, Hu K, Shi L,Gottesfeld S, Xu B, Yan Y. Poly(aryl piperidinium)membranes and ionomers for hydroxide exchange membrane fuel cells[J]. Nature Energy, 2019, 4(5):392-398.
58 Che X, Wang L, Wang T, Dong J,Yang J. The effect of grafted alkyl side chains on the properties of poly(terphenyl piperidinium)based high temperature proton exchange membranes[J]. Industrial Chemistry&Materials, 2023,1(4):516-525.
59 Lv R, Jin S, Li L, Wang Q, Wang L, Wang J, Yang J. The influence of comonomer structure on properties of poly(aromatic pyridine)copolymer membranes for HT-PEMFCs[J]. Journal of Membrane Science, 2024, 701:122703.
60 Shi N, Wang G, Wang Q, Wang L, Li Q, Yang J. Acid doped branched poly(biphenyl pyridine)membranes for high temperature proton exchange membrane fuel cells and vanadium redox flow batteries[J]. Chemical Engineering Journal, 2024, 489:151121.
61 Zhao W, Xu X, Bai H, Zhang J, Lu S, Xiang Y. Self-crosslinked polyethyleneimine-polysulfone membrane for high temperature proton exchange membrane[J]. Acta Chimica Sinica, 2020, 78(1):69.
62 Jin Y, Liu R, Che X, Wang T, Yang J. New high temperature polymer electrolyte membranes based on poly(ethylene imine)crosslinked poly(ether ketone cardo)[J]. Journal of The Electrochemical Society, 2021, 168(5):054524.
63 Guo Z, Xiu R, Lu S, Xu X, Yang S, Xiang Y. Submicro-pore containing poly(ether sulfones)/polyvinylpyrrolidone membranes for high-temperature fuel cell applications[J]. Journal of Materials Chemistry A, 2015, 3(16):8847-8854.
64 Yang J, Wang J, Liu C, Gao L, Xu Y, Che Q, He R. Influences of the structure of imidazolium pendants on the properties of polysulfone-based high temperature proton conducting membranes[J]. Journal of Membrane Science,2015, 493:80-87.
65 Liu R, Wang J, Che X, Wang T, Aili D, Li Q, Yang J. Facile synthesis and properties of poly(ether ketone cardo)s bearing heterocycle groups for high temperature polymer electrolyte membrane fuel cells[J]. Journal of Membrane Science, 2021, 636:119584.
66 Liu R, Liu M, Wu S, Che X, Dong J, Yang J. Assessing the influence of various imidazolium groups on the properties of poly(vinyl chloride)based high temperature proton exchange membranes[J]. European Polymer Journal, 2020, 137:109948.
67 Liu R, Dai Y, Li J, Chen X, Pan C, Yang J, Li Q. 1-(3-Aminopropyl)imidazole functionalized poly(vinyl chloride)for high temperature proton exchange membrane fuel cell applications[J]. Journal of Membrane Science, 2021,620:118873.
68 Kreuer K D. Ion conducting membranes for fuel cells and other electrochemical devices[J]. Chemistry of Materials, 2014, 26(1):361-380.
69 Tang H, Geng K, Hao J, Zhang X, Shao Z, Li N. Properties and stability of quaternary ammonium-biphosphate ion-pair poly(sulfone)s high temperature proton exchange membranes for H2/O2 fuel cells[J]. Journal of Power Sources, 2020, 475:228521.
70 Yang J S, Cleemann L N, Steenberg T, Terkelsen C, Li Q, Jensen J O, Hjuler H, Bjerrum N J, He R. High molecular weight polybenzimidazole membranes for high temperature PEMFC[J]. Fuel Cells, 2014, 14(1):7-15.
71 Wang P, Liu Z, Li X, Peng J, Hu W, Liu B. Toward enhanced conductivity of high-temperature proton exchange membranes:development of novel PIM-1 reinforced PBI alloy membranes[J]. Chemical Communications, 2019,55(46):6491-6494.
72 Tang H, Gao J, Wang Y, Li N, Geng K. Phosphoric-acid retention in high-temperature proton-exchange membranes[J].Chemistry-A European Journal, 2022, 28(70):e202202064.
基本信息:
DOI:10.16026/j.cnki.iea.2024050366
中图分类号:TM911.4
引用信息:
[1]王乐乐,王潜,李雷等.燃料电池用高性能耐高温质子交换膜的研究进展[J].离子交换与吸附,2024,40(05):366-375.DOI:10.16026/j.cnki.iea.2024050366.
基金信息:
国家自然科学基金项目(基金号51603031)
暂无数据