487 | 3 | 15 |
下载次数 | 被引频次 | 阅读次数 |
水中的离子污染物对环境和人类健康的危害日益严重,开发高效去除水中离子污染物的方法已成为一个热门的研究方向。金属-有机框架(MOF)作为一类新型的无机-有机杂化材料,具有可设计的多孔结构和丰富的活性位点,是一种理想的吸附剂,在去除水中离子污染物方面展现了巨大的潜能。本文综述了近年来MOFs去除水中离子污染物的研究进展并简要讨论了这一领域的发展前景和面临的挑战。
Abstract:The harm of ionic contaminants in water to environment and human health is increasingly serious. The development of efficient methods to remove ionic contaminants in water has become a hot research field. Metal-organic framework(MOF) as a new kind of inorganic-organic hybrid material, showed designable porous structures and abundant active sites. It was an ideal adsorbent and exhibits great potential in removing ionic contaminants from water. In this review, the research progress of MOFs in removing ionic contaminants from water in recent years was summarized, and the development prospects and challenges in this field were briefly discussed.
[1] Li H, Eddaoudi M, O'Keeffe M, Yaghi O M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402:276-279.
[2] Hu Z C, Deibert B J, Li J. Luminescent metal-organic frameworks for chemical sensing and explosive detection[J]. Chemical Society Reviews, 2014, 43:5815-5840.
[3] Zhang T, Lin W B. Metal-organic frameworks for artificial photosynthesis and photocatalysis[J].Chemical Society Reviews, 2014, 43:5982-5993.
[4] Wang L, Han Y Z, Feng X, Zhou J W, Qi P F, Wang B. Metal-organic frameworks for energy storage:Batteries and supercapacitors[J]. Coordination Chemistry Reviews, 2016, 307:361-381.
[5] Cui W G, Hu T L, Bu X H. Metal-organic framework materials for the separation and purification of light hydrocarbons[J]. Advanced Materials, 2020, 32:Art no 1806445.
[6] Ding M L, Flaig R W, Jiang H L, Yaghi O M. Carbon capture and conversion using metalorganic frameworks and MOF-based materials[J]. Chemical Society Reviews, 2019, 48:2783-2828.
[7] Zhao J P, Xu J, Han S D, Wang Q L, Bu X H. A niccolite structural multiferroic metalorganic framework possessing four different types of bistability in response to dielectric and magnetic modulation[J]. Advanced Materials, 2017, 29:Art no 1606966.
[8] Zhong M, Kong L, Li N, Liu Y Y, Zhu J, Bu X H. Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries[J]. Coordination Chemistry Reviews, 2019, 388:172-201.
[9] Zhang D S, Gao Q, Chang Z, Liu X T, Zhao B, Xuan Z H, Hu T L, Zhang Y H, Zhu J, Bu X H. Rational construction of highly tunable donor-acceptor materials based on a crystalline host-guest platform[J]. Advanced Materials, 2018, 30:Art no 1804715.
[10] Milly P, Betancourt J, Falkenmark M, Hirsch R M, Kundzewicz Z W, Lettenmaier D P,Stouffer R J. Stationarity is dead:Whither water management?[J]. Science, 2008, 319:573-574.
[11] V?r?smarty C J, Mclntyre P B, Gessner M O, Dudgeon D, Prusevich A, Green P, Glidden S, Bunn S E, Sullivan C A, Liermann C R, Davies P M. Global threats to human water security and river biodiversity[J]. Nature, 2010, 467:555-561.
[12] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mari?as B J, Mayes A M. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452:301-310.
[13] Schwarzenbach R P, Escher B I, Fenner K, Hofstetter T B, Johnson C A, Gunten U, Wehrli B. The challenge of micropollutants in aquatic systems[J]. Science, 2006, 313:1072-1077.
[14] Martínez-Huitle C A, Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment:Direct and indirect processes[J]. Chemical Society Reviews, 2006,35:1324-1340.
[15] Bashir A, Malik L A, Ahad S, Manzoor T, Bhat M A, Dar G N, Pandith A H. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods[J].Environmental Chemistry Letters, 2019, 17:729-754.
[16] Aragay G, Pons J, Merkoci A. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection[J]. Chemical Reviews, 2011, 111:3433-3458.
[17] Yue D T, Qian X F, Zhao Y X. Photocatalytic remediation of ionic pollutant[J]. Science Bulletin, 2015, 60:1791-1806.
[18] Hirayama J, Abe R, Kamiya Y. Combinational effect of Pt/SrTiO3:Rh photocatalyst and SnPd/Al2O3non-photocatalyst for photocatalytic reduction of nitrate to nitrogenin water under visible light irradiation[J]. Applied Catalysis B:Environmental, 2014, 144:721-729.
[19] Bolto B, Gregory J. Organic polyelectrolytes in water treatment[J]. Water Research, 2007,41:2301-2324.
[20] Savage N, Diallo M S. Nanomaterials and water purification:Opportunities and challenges[J]. Journal of Nanoparticle Research, 2005, 7:331-342.
[21] Verma A K, Dash R R, Bhunia P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters[J]. Journal of Environmental Management, 2012, 93:154-168.
[22] Manos M J, Kanatzidis M G. Layered metal sulfides capture uranium from seawater[J].Journal of the American Chemical Society, 2012, 134:16441-16446.
[23] Wu X L, Tan X L, Yang S T, Wen T, Guo H L, Wang X K, Xu A W. Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides[J]. Water Research,2013, 47:4159-4168.
[24] Sun Y B, Shao D D, Chen C L, Yang S B, Wang X K. Highly efficient enrichment of radionuclides on graphene oxide-supported polyaniline[J]. Environmental Science&Technology, 2013, 47:9904-9910.
[25] Uddin M J, Ampiaw R E, Lee W. Adsorptive removal of dyes from wastewater using a metal-organic framework:A review[J]. Chemosphere, 2021, 284:Art no 131314.
[26] Zhou H C, Kitagawa S. Metal-organic frameworks(MOFs)[J]. Chemical Society Reviews,2014, 43:5415-5418.
[27] Ibrahim A O, Adegoke K A, Adegoke R O, AbdulWahab Y A, Oyelami V B, Adesina M O.Adsorptive removal of different pollutants using metal-organic framework adsorbents[J].Journal of Molecular Liquids, 2021, 333:Art no 115593.
[28] Huang X J, Huang L, Arulmani S R B, Yan J, Li Q, Tang J F, Wan K L, Zhang H G, Xiao T F, Shao M H. Research progress of metal organic frameworks and their derivatives for adsorption of anions in water:A review[J]. Environmental Research, 2022, 204:Art no112381.
[29] Li S J, Liu M, Yin C, Chen J, Yang X J, Wang S X. Tuning the structure flexibility of metalorganic frameworks via adjusting precursor anionic species for selective removal of phosphorus[J]. Process Safety and Environmental Protection, 2020, 143:322-331.
[30] Li Z C, Ma S J, Chen C X, Qu G J, Jin W, Zhao Y P. Efficient capture of arsenate from alkaline smelting wastewater by acetate modulated yttrium based metal-organic frameworks[J].Chemical Engineering Journal, 2020, 397:Art no 125292.
[31] Ibrahim A O, Adegoke K A, Adegoke R O, AbdulWahab Y A, Oyelami V B, Adesina M O.Adsorptive removal of different pollutants using metal-organic framework adsorbents[J].Journal of Molecular Liquids, 2021, 333:Art no 115593.
[32] Song J Y, Jhung S H. Adsorption of pharmaceuticals and personal care products over metalorganic frameworks functionalized with hydroxyl groups:Quantitative analyses of Hbonding in adsorption[J]. Chemical Engineering Journal, 2017, 322:366-374.
[33] DeFuria M D, Zeller M, Genna D T. Removal of pharmaceuticals from water viaπ—πstacking interactions in perfluorinated metal-organic frameworks[J]. Crystal Growth&Design,2016, 16:3530-3534.
[34] Azhar M R, Abid H R, Sun H Q, Periasamy V, Tade M O, Wang S B. Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater[J]. Journal of Colloid and Interface Science, 2016,478:344-352.
[35] Li J, Wang X X, Zhao G X, Chen C L, Chai Z F, Alsaedi A, Hayat T, Wang X K. Metalorganic framework-based materials:Superior adsorbents for the capture of toxic and radioactive metal ions[J]. Chemical Society Reviews, 2018, 47:2322-2356.
[36] Howarth A J, Katz M J, Wang T C, Platero-Prats A E, Chapman K W, Hupp J T, Farha O K.High efficiency adsorption and removal of selenate and selenite from water using metalorganic frameworks[J]. Journal of the American Chemical Society, 2015, 137:7488-7494.
[37] Liu L, Zhang X N, Han Z B, Gao M L, Cao X M, Wang S M. An in-III-based anionic metalorganic framework:Sensitization of lanthanide(III)ions and selective absorption and separation of cationic dyes[J]. Journal of Materials Chemistry A, 2015, 3:14157-14164.
[38] Xiong J B, Fan Y L, Luo F. Grafting functional groups in metal-organic frameworks for U(VI)sorption from aqueous solutions[J]. Dalton Transactions, 2020, 49:12536-12545.
[39] Wang C H, Liu X L, Demir N K, Chen J P, Li K. Applications of water stable metal-organic frameworks[J]. Chemical Society Reviews, 2016, 45:5107-5134.
[40] Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130:13850-13851.
[41] Luo F, Chen J L, Dang L L, Zhou W N, Lin H L, Li J Q, Liu S J, Luo M B. Highperformance Hg2+removal from ultra-low-concentration aqueous solution using both acylamide-and hydroxyl-functionalized metal-organic framework[J]. Journal of Materials Chemistry A, 2015, 3:9616-9620.
[42] Liang L F, Chen Q H, Jiang F L, Yuan D Q, Qian J J, Lv G X, Xue H, Liu L Y, Jiang H L,Hong M C. In situ large-scale construction of sulfur-functionalized metal-organic framework and its efficient removal of Hg(II)from water[J]. Journal of Materials Chemistry A, 2016,4:15370-15374.
[43] Li Z W, Wang L, Qin L, Lai C, Wang Z H, Zhou M, Xiao L H, Liu S Y, Zhang M M.Recent advances in the application of water-stable metal-organic frameworks:Adsorption and photocatalytic reduction of heavy metal in water[J]. Chemosphere, 2021, 285:Art no131432.
[44] Costa M, Klein C B. Toxicity and carcinogenicity of chromium compounds in humans[J].Critical Reviews in Toxicology, 2006, 36:155-163.
[45] Pavesi T, Moreira J C. Mechanisms and individuality in chromium toxicity in humans[J].Journal of Applied Toxicology, 2020, 40:1183-1197.
[46] Zayed A M, Terry N. Chromium in the environment:Factors affecting biological remediation[J]. Plant and Soil, 2003, 249:139-156.
[47] Cimino G, Passerini A, Toscano G. Removal of toxic cations and Cr(VI)from aqueous solution by hazelnut shell[J]. Water Research, 2000, 34:2955-2962.
[48] Abuzalat O, Tantawy H, Mokhtar M, Baraka A. Nano-porous bimetallic organic frameworks(Fe/Co)-BDC, a breathing MOF for rapid and capacitive removal of Croxyanions from water[J]. Journal of Water Process Engineering, 2022, 46:Art no 102537.
[49] Qiao W Z, Yang G L, Zhu Z H, Xu H, Zhao B. Cooperation between microporous frameworks and micron-sized channel in crystals for excellent chromate removal[J].Chemical Engineering Journal, 2022, 430:Art no 132655.
[50] Cui W R, Jiang W, Zhang C R, Liang R P, Liu J, Qiu J D. Regenerable carbohydrazidelinked fluorescent covalent organic frameworks for ultrasensitive detection and removal of mercury[J]. ACS Sustainable Chemistry&Engineering, 2020, 8:445-451.
[51] Chattaraj P K, Ayers P W, Melin J. Further links between the maximum hardness principle and the hard/soft acid/base principle:Insights from hard/soft exchange reactions[J].Physical Chemistry Chemical Physics, 2007, 9:3853-3856.
[52] Kokalj A. On the HSAB based estimate of charge transfer between adsorbates and metal surfaces[J]. Chemical Physics, 2012, 393:1-12.
[53] Ke F, Qiu L G, Yuan Y P, Peng F M, Jiang X, Xie A J, Shen Y H, Zhu J F. Thiolfunctionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+from water[J]. Journal of Hazardous Materials,2011, 196:36-43.
[54] Yang P F, Shu Y F, Zhuang Q X, Li Y S, Gu J L. A robust MOF-based trap with highdensity active alkyl thiol for the super-efficient capture of mercury[J]. Chemical Communications, 2019, 55:12972-12975.
[55] Chai X, Dong H, Zhang Z, Qi Z, Chen J, Huang Z, Ye C, Qiu T. A novel Zr-MOF modified by 4,6-Diamino-2-mercaptopyrimidine for exceptional Hg(II)removal[J]. Journal of Water Process Engineering, 2022, 46:Art no 102606.
[56] Zhao Y J, Deng Q Y, Lin Q, Zeng C Y, Zhong C. Cadmium source identification in soils and high-risk regions predicted by geographical detector method[J]. Environmental Pollution, 2020, 263:Art no 114338.
[57]?uki?-?osi?D, Barali?K, Javorac D, Djordjevic A B, Bulat Z. An overview of molecular mechanisms in cadmium toxicity[J]. Current Opinion in Toxicology, 2020, 19:56-62.
[58] Elaiwi F A, Sirkecioglu A. Amine-functionalized metal organic frameworks MIL-101(Cr)adsorbent for copper and cadmium ions in single and binary solution[J]. Separation Science and Technology, 2020, 55:3362-3374.
[59] Esrafili L, Firuzabadi F D, Morsali A, Hu M L. Reuse of predesigned dual-functional metal organic frameworks(DF-MOFs)after heavy metal removal[J]. Journal of Hazardous Materials, 2021, 403:Art no 123696.
[60] Boskabady M, Marefati N, Farkhondeh T, Shakeri F, Farshbaf A, Boskabady M H. The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review[J]. Environment International, 2018, 120:404-420.
[61] Wang R D, He L, Zhu R R, Jia M, Zhou S, Tang J, Zhang W Q, Du L, Zhao Q H. Highly efficient and selective capture Pb(II)through a novel metal-organic framework containing bifunctional groups[J]. Journal of Hazardous Materials, 2022, 427:Art no 127852.
[62] Yin N, Wang K, Xia Y A, Li Z Q. Novel melamine modified metal-organic frameworks for remarkably high removal of heavy metal Pb(II)[J]. Desalination, 2018, 430:120-127.
[63] Zhong B, Stanforth R, Wu S, Chen J P. Proton interaction in phosphate adsorption onto goethite[J]. Journal of Colloid and Interface Science, 2007, 308:40-48.
[64] Sengupta S, Pandit A. Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer[J]. Water Research, 2011, 45:3318-3330.
[65] Lu B, Wang S Y, Zhao L, Zhou D D, Dong S S, Wang G. Selective and superior capture of phosphate by using bimetallic bismuth-based metal-organic frameworks[J]. Chemical Engineering Journal, 2021, 425:Art no 131514.
[66] Lin Z H, Tang J L, Huang X C, Chen J P. Gadolinium(III)terephthalate metal-organic framework for rapid sequestration of phosphate in 10min:Material development and adsorption study[J]. Chemosphere, 2022, 292:Art no 133498.
[67] Chakraborti D, Rahman M M, Das B, Murrill M, Dey S, Chandra Mukherjee S, Dhar R K,Biswas B K, Chowdhury U K, Roy S, Sorif S, Selim M, Rahman M, Quamruzzaman Q.Status of groundwater arsenic contamination in Bangladesh:A 14-year study report[J].Water Research, 2010, 44:5789-5802.
[68] Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes C J, Valko M.Arsenic:Toxicity, oxidative stress and human disease[J]. Journal of Applied Toxicology,2011, 31:95-107.
[69] Choong T S Y, Chuah T G, Robiah Y, Koay F L G, Azni I. Arsenic toxicity, health hazards and removal techniques from water:An overview[J]. Desalination, 2007, 217:139-166.
[70] Xu R M, Ji Q H, Zhao P, Jian M P, Xiang C, Hu C Z, Zhang G, Tang C C, Liu R P, Zhang X W, Qu J H. Hierarchically porous UiO-66 with tunable mesopores and oxygen vacancies for enhanced arsenic removal[J]. Journal of Materials Chemistry A, 2020, 8:7870-7879.
[71] Yin C, Li S J, Liu L L, Huang Q L, Zhu G P, Yang X J, Wang S X. Structure-tunable trivalent Fe-Al-based bimetallic organic frameworks for arsenic removal from contaminated water[J]. Journal of Molecular Liquids, 2022, 346:Art no 117101.
[72] Mathews G, Nagaiah N, Kumar M B K, Ambika M R. Radiological and chemical toxicity due to ingestion of uranium through drinking water in the environment of Bangalore, India[J].Journal of Radiological Protection, 2015, 35:447-455.
[73] Sun M H, Liu S Q, Du K J, Nie C M, Lin Y W. A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2014, 118:130-137.
[74] Zhong X, Liang W, Wang H F, Xue C, Hu B W. Aluminum-based metal-organic frameworks(CAU-1)highly efficient UO22+and TcO4-ions immobilization from aqueous solution[J]. Journal of Hazardous Materials, 2021, 407:Art no 124729.
[75] Zhang G G, Fang Y G, Wang Y D, Liu L J, Mei D C, Ma F Q, Meng Y J, Dong H X, Zhang C H. Synthesis of amino acid modified MIL-101 and efficient uranium adsorption from water[J]. Journal of Molecular Liquids, 2022, 349:Art no 118095.
[76] Smith J T, Wright S M, Cross M A, Monte L, Kudelsky A V, Saxen R, Vakulovsky S M,Timms D N. Global analysis of the riverine transport of90Sr and137Cs[J]. Environmental Science&Technology, 2004, 38:850-857.
[77] Mertz J L, Fard Z H, Malliakas C D, Manos M J, Kanatzidis M G. Selective removal of Cs+, Sr2+, and Ni2+by K2xMgxSn3-xS6(x=0.5~1)(KMS-2)relevant to nuclear waste remediation[J]. Chemistry of Materials, 2013, 25:2116-2127.
[78] Namiki Y, Namiki T, Ishii Y, Koido S, Nagase Y, Tsubota A, Tada N, Kitamoto Y. Inorganicorganic magnetic nanocomposites for use in preventive medicine:A rapid and reliable elimination system for cesium[J]. Pharmaceutical Research, 2012, 29:1404-1418.
[79] Le Q T N, Cho K. Caesium adsorption on a zeolitic imidazolate framework(ZIF-8)functionalized by ferrocyanide[J]. Journal of Colloid and Interface Science, 2021, 581:741-750.
[80] Ma W, Lv T T, Tang J H, Feng M L, Huang X Y. Highly efficient uptake of Cs+by robust layered metal-organic frameworks with a distinctive ion exchange mechanism[J]. Journal of the American Chemical Society Au, 2022, 2:492-501.
[81] Zachara J M, Heald S M, Jeon B H, Kukkadapu R K, Liu C, McKinley J P, Dohnalkova A C, Moore D A. Reduction of pertechnetate[Tc(VII)] by aqueous Fe(II)and the nature of solid phase redox products[J]. Geochimica et Cosmochimica Acta, 2007, 71:2137-2157.
[82] Lee B, Bao L L, Im H J, Dai S, Hagaman E W, Lin J S. Synthesis and characterization of organic-inorganic hybrid mesoporous anion-exchange resins for perrhenate(ReO4-)anion adsorption[J]. Langmuir, 2003, 19:4246-4252.
[83] Kang K, Li L, Zhang M Y, Zhang X W, Lei L C, Xiao C L. Constructing cationic metalorganic framework materials based on pyrimidyl as a functional group for perrhenate/pertechnetate sorption[J]. Inorganic Chemistry, 2021, 60:16420-16428.
[84] Murugesan A, Loganathan M, Kumar P S, Vo D V N. Cobalt and nickel oxides supported activated carbon as an effective photocatalysts for the degradation methylene blue dye from aquatic environment[J]. Sustainable Chemistry and Pharmacy, 2021, 21:Art no 100406.
[85] Renita A A, Vardhan K H, Kumar P S, Ngueagni P T, Abilarasu A, Nath S, Kumari P,Saravanan R. Effective removal of malachite green dye from aqueous solution in hybrid system utilizing agricultural waste as particle electrodes[J]. Chemosphere, 2021, 273:Art no 129634.
[86] Liang J Y, Ning X A, Sun J, Song J, Lu J, Cai H L, Hong Y X. Toxicity evaluation of textile dyeing effluent and its possible relationship with chemical oxygen demand[J]. Ecotoxicology and Environmental Safety, 2018, 166:56-62.
[87] Akpinar I, Yazaydin A O. Rapid and efficient removal of carbamazepine from water by UiO-67[J]. Industrial&Engineering Chemistry Research, 2017, 56:15122-15130.
[88] Abhinaya M, Parthiban R, Kumar P S, Vo D V N. A review on cleaner strategies for extraction of chitosan and its application in toxic pollutant removal[J]. Environmental Research, 2021, 196:Art no 110996.
[89] Chatterjee S, Lee D S, Lee M W, Woo S H. Enhanced adsorption of congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide[J]. Bioresource Technology, 2009, 100:2803-2809.
[90] Han R P, Ding D D, Xu Y F, Zou W H, Wang Y F, Li Y F, Zou L. Use of rice husk for the adsorption of congo red from aqueous solution in column mode[J]. Bioresource Technology, 2008, 99:2938-2946.
[91] Chen N N, Chen D, Wei F H, Zhao S Q, Luo Y. Effect of structures on the adsorption performance of cobalt metal organic framework obtained by microwave-assisted ball milling[J]. Chemical Physics Letters, 2018, 705:23-30.
[92] Guo X L, Kong L J, Ruan Y, Diao Z H, Shih K M, Su M H, Hou L A, Chen D Y. Green and facile synthesis of cobalt-based metal-organic frameworks for the efficient removal of Congo red from aqueous solution[J]. Journal of Colloid and Interface Science, 2020, 578:500-509.
[93] Mittal A, Malviya A, Kaur D, Mittal J, Kurup L. Studies on the adsorption kinetics and isotherms for the removal and recovery of methyl orange from wastewaters using waste materials[J]. Journal of Hazardous Materials, 2007, 148:229-240.
[94] Rafatullah M, Sulaiman O, Hashim R, Ahmad A. Adsorption of methylene blue on low-cost adsorbents:A review[J]. Journal of Hazardous Materials, 2010, 177:70-80.
[95] Molavi H, Hakimian A, Shojaei A, Raeiszadeh M. Selective dye adsorption by highly water stable metal-organic framework:Long term stability analysis in aqueous media[J]. Applied Surface Science, 2018, 445:424-436.
[96] Yang J M, Yang B C, Zhang Y, Yang R N, Ji S S, Wang Q, Quan S, Zhang R Z. Rapid adsorptive removal of cationic and anionic dyes from aqueous solution by a Ce(III)-doped Zr-based metal-organic framework[J]. Microporous and Mesoporous Materials, 2020, 292:Art no 109764.
[97] Srivastava S, Sinha R, Roy D. Toxicological effects of malachite green[J]. Aquatic Toxicology, 2004, 66:319-329.
[98] Wang W, Guo X Y, Fu S Y, Yang T X, Wen Y, Yang H F. Optimized core-shell Au@Ag nanoparticles for label-free Raman determination of trace rhodamine B with cancer risk in food product[J]. Food Chemistry, 2015, 188:137-142.
[99] Singh N J, Wareppam B, Ghosh S, Sahu B P, AjiKumar P K, Singh H P, Chakraborty S, Pati S S, Oliveira A C, Barg S, Garg V K, Singh L H. Alkali-cation-incorporated and functionalized iron oxide nanoparticles for methyl blue removal/decomposition[J].Nanotechnology, 2020, 31:Art no 425703.
[100] Sadat S A, Ghaedi A M, Panahimehr M, Baneshi M M, Vafaei A, Ansarizadeh M. Rapid room-temperature synthesis of cadmium zeolitic imidazolate framework nanoparticles based on 1, 1'-carbonyldiimidazole as ultra-high-efficiency adsorbent for ultrasoundassisted removal of malachite green dye[J]. Applied Surface Science, 2019, 467/468:1204-1212.
[101] Deng S Q, Mo X J, Zheng S R, Jin X, Gao Y, Cai S L, Fan J, Zhang W G. Hydrolytically stable nanotubular cationic metal-organic framework for rapid and efficient removal of toxic oxo-anions and dyes from water[J]. Inorganic Chemistry, 2019, 58:2899-2909.
[102] Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics(VAs)in the environment[J].Chemosphere, 2006, 65:725-759.
[103] Watanabe N, Bergamaschi B A, Loftin K A, Meyer M T, Harter T. Use and environmental occurrence of antibiotics in freestall dairy farms with manured forage fields[J].Environmental Science&Technology, 2010, 44:6591-6600.
[104] Beausse J. Selected drugs in solid matrices:A review of environmental determination,occurrence and properties of principal substances[J]. TrAC Trends in Analytical Chemistry, 2004, 23:753-761.
[105] Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment[J]. Ecological Indicators, 2008, 8:1-13.
[106] Chai F F, Zhao X D, Gao H H, Zhao Y W, Huang H L, Gao Z Q. Effective removal of antibacterial drugs from aqueous solutions using porous metal-organic frameworks[J].Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29:1305-1313.
[107] Rego R M, Sriram G, Ajeya K V, Jung H Y, Kurkuri M D, Kigga M. Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification[J]. Journal of Hazardous Materials, 2021, 416:Art no 125941.
[108] Jia Y Y, Zhang Y H, Xu J, Feng R, Zhang M S, Bu X H. A high-performance “sweeper”for toxic cationic herbicides:An anionic metal-organic framework with a tetrapodal cage[J].Chemical Communications, 2015, 51:17439-17442.
[109] Yang Y, Che J X, Wang B, Wu Y Z, Chen B H, Gao L, Dong X W, Zhao J H. Visible-lightmediated guest trapping in a photosensitizing porous coordination network:Metal-free CC bond-forming modification of metal-organic frameworks for aqueous-phase herbicide adsorption[J]. Chemical Communications, 2019, 55:5383-5386.
[110] Wu G G, Ma J P, Li S, Wang S S, Jiang B, Luo S Y, Li J H, Wang X Y, Guan Y F, Chen L X. Cationic metal-organic frameworks as an efficient adsorbent for the removal of 2, 4-dichlorophenoxyacetic acid from aqueous solutions[J]. Environmental Research, 2020,186:Art no 109542.
基本信息:
DOI:10.16026/j.cnki.iea.2022040344
中图分类号:X703;O641.4
引用信息:
[1]李泽祺,耿琳,于美慧等.金属-有机框架去除水中离子污染物的研究进展[J].离子交换与吸附,2022,38(04):344-364.DOI:10.16026/j.cnki.iea.2022040344.
基金信息:
国家自然科学基金(No.21875115;22005153)