nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 05, v.40 376-393
结构化水凝胶的构建及其应用
基金项目(Foundation): 国家自然科学基金面上项目(基金号21774064)
邮箱(Email): zkzhang@nankai.edu.cn.;
DOI: 10.16026/j.cnki.iea.2024050376
摘要:

生物软物质材料的特殊性能往往来源于其内部规整的有序结构。受此启发,在原本无规的水凝胶内部引入规整的内在本征结构有望赋予水凝胶各种独特的性能,使其作为多重刺激响应性智能材料在可视化生物传感器、机械形变诱导显示技术、软体机器人等新兴领域有着广泛的应用潜能。因此,制备具有一定内在有序结构的水凝胶已经成为水凝胶研究领域的一个新方向。在此基础上,结构化水凝胶(Structured hydrogel或Structural hydrogel)的概念被提出并逐步完善。文章结合笔者在结构化水凝胶领域的前期工作积累,从结构化水凝胶的基本概念、制备方法、特性以及应用等几个方面对结构化水凝胶的研究进展进行初步总结。

Abstract:

Inspired by the regular internal structures found in many biological soft materials, which exhibit with unique functional performances, conventional hydrogels are expected to have enhanced functions through the incorporation of regular internal structures into their random and irregular polymeric matrix. With such synthesized hydrogels, numerous potential applications emerge, including but not limited to visible sensing,strain-induced visible displays, actuators, and soft robotics. Over the past decades, previous works have reported various types of hydrogels with internal regular structures, and the subfields of structured or structural hydrogels have gradually matured. This review briefly summarizes recent progress in structured hydrogels, focusing on the basic concepts, preparation strategies, and the unique properties conferred by internal structures.

参考文献

1 Wu J J,Guo J,Linghu C H,Song J Z,Xie T,Zhao Q.Rapid digital light 3D printing enabled by a soft and deformable hydrogel separation interface[J].Nature Communications,2021,12:6070.

2 Wichterle O,Lim D.Hydrophilic gels for biological use[J].Nature,1960,185:117-118.

3 Fan H L,Gong J P.Fabrication of bioinspired hydrogels:challenges and opportunities[J].Macromolecules,2020,53(8):2769-2782.

4 Zhao X H,Yuk H W,Lin S T,Liu X Y,Parada G.Soft materials by design:unconventional polymer networks give extreme properties[J].Chemical Reviews,2021,121(8):4309-4372.

5 Sun J Y,Zhao X,Illeperuma W,Chaudhuri O,Oh K H,Mooney D J,Vlassak J J,Suo Z G.Highly stretchable and tough hydrogels[J].Nature,2012,489:133-136.

6 Wang X Q,Chan K H,Lu W H,Ding T P,Ng S W L,Cheng Y,Li T T,Hong M H,Tee B C K,Ho G W.Macromolecule conformational shaping for extreme mechanical programming of polymorphic hydrogel fibers[J].Nature Communications,2022,13:3369.

7 Dragan E S.Design and applications of interpenetrating polymer network hydrogels[J].Chemical Engineering Journal,2014,243:572-590.

8 Gong J P,Katsuyama Y,Kurokawa T,Osada Y.Double-network hydrogels with extremely high mechanical strength[J].Advanced Materials,2003,15:1155-1158.

9 Ding H J,Wu Z X,Wang H,Zhou Z J,Wei Y M,Tao K,Xie X,Wu J.An ultrastretchable,high-performance,and crosstalk-free proximity and pressure bimodal sensor based on ionic hydrogel fibers for human-machine interfaces[J].Materials Horizons,2022,9:1935-1946.

10 Liu J,Lin S T,Liu X Y,Qin Z,Yang Y Y,Zang J F,Zhao Z H.Fatigue-resistant adhesion of hydrogels[J].Nature Communications,2020,11:1071.

11 Lei H,Dong L,Li Y,Zhang J S,Chen H Y,Wu J H,Zhang Y,Fan Q Y,Xue B,Qin M,Chen B,Cao Y,Wang W.Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers[J].Nature Communications,2020,11:4032.

12 Liu C,Morimoto N,Jiang L,Sohei K,Takako N,Hideaki Y,Koichi M,Kohzo I.Tough hydrogels with rapid selfreinforcement[J].Science,2021,372:1078-1081.

13 He X,Li Z K,Li J,Mishra D,Ren Y X,Gates I,Lu Q Y.Ultrastretchable,adhesive,and antibacterial hydrogel with robust spinnability for manufacturing strong hydrogel micro/nanofibers[J].Small,2021,17 (49):2103521.

14 Li X F,Kurokawa T,Takahashi R,Haque A,Yue Y F,Nakajima T,Gong J P.Polymer adsorbed bilayer membranes form self-healing hydrogels with tunable superstructure[J].Macromolecules,2015,48 (7):2277-2282.

15 Li H L,Lv T,Sun H H,Qian G J,Li N,Yao Y,Chen T.Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte[J].Nature Communications,2019,10:536.

16 Roy C K,Guo H L,Sun T L,Ihsan A B,Kurokawa T,Takahata M,Nonoyama T,Nakajima T,Gong J P.Selfadjustable adhesion of polyampholyte hydrogels[J].Advanced Materials,2015,27:7344-7348.

17 Han L,Yan L W,Wang K F,Fang L M,Zhang H P,Tang Y H,Ding Y H,Weng L T,Xu J L,Weng Jie,Liu Y J,Ren F Z,Lu X.Tough,self-healable and tissue-adhesive hydrogel with tunable multifunctionality[J].NPG Asia Materials,2017,9:e372.

18 Du L L,Liao R X,Zhang H J,Qu X W,Hu X L.Redox-activity of polydopamine for ultrafast preparation of selfhealing and adhesive hydrogels[J].Colloids and Surfaces B:Biointerfaces,2022,214:112469.

19 Xiao W Y,Liu X,Wang W B,Zhang X B,Wang Y Z,Lan J Z,Fan B S,Shi L X,Wan X Z,Wang S T.Selfpumping janus hydrogel with aligned channels for accelerating diabetic wound healing[J].Macromolecular Rapid Communications,2022,44 (7):2200814.

20 Zhang J,Liu B R,Liu X L.Laser ablated janus hydrogel composite membrane for draining excessive blood and biofluid around wounds[J].Macromolecular Materials and Engineering,2022,307 (8):2200026.

21 Cui C Y,Wu T L,Chen X Y,Liu Y,Li Y,Xu Z Y,Fan C C,Liu W G.A janus hydrogel wet adhesive for internal tissue repair and anti-postoperative adhesion[J].Advanced Functional Materials,2020,30 (49):2005689.

22 Liu D S,Jiang P,Wang Y X,Lu Y Z,Wu J Y,Xu X,Ji Z Y,Sun C F,Wang Z L,Liu W M.Engineering tridimensional hydrogel tissue and organ phantoms with tunable springiness[J].Advanced Functional Materials,2023,33 (17):2214885.

23 Tang L,Yang S N,Liang F X,Wang Q,Qu X Z,Wang Z Z.Janus nanocage toward platelet delivery[J].ACSApplied Materials&Interfaces,2016,8(19):12056-12062.

24 Liu W S,Gao R,Yang C F,Feng Z J,Ouyang W B,Pan X B,Huang P S,Zhang C N,Kong D L,Wang W W.ECM-mimetic immunomodulatory hydrogel for methicillin-resistant Staphylococcus aureus-infected chronic skin wound healing[J].Science Advances,2022,8(27):7006.

25 Yao M M,Wei Z J,Li J J,Guo Z C,Yan Z J,Sun X,Yu Q Y,Wu X J,Yu C J,Yao F L,Feng S Q,Zhang H,Li J J.Microgel reinforced zwitterionic hydrogel coating for blood-contacting biomedical devices[J].Nature Communications,2022,13:5339.

26 Han Q Q,Zhang C,Guo T M,Tian Y J,Song W,Lei J X,Li Q,Wang A H,Zhang M L,Bai S,Yan X H.Hydrogel nanoarchitectonics of a flexible and self-adhesive electrode for long-term wireless electroencephalogram recording and high-accuracy sustained attention evaluation[J].Advanced Materials,2023,35(12):2209606.

27 Hui Y,Yao Y,Qian Q L,Luo J H,Chen H H,Qiao Z,Yu Y T,Tao L,Zhou N J.Three-dimensional printing of soft hydrogel electronics[J].Nature Electronics,2022,5:893-903.

28 Won D,Kim J,Choi J,Kim H J,Han S,Ha I,Bang J,Kim K K,Lee Y,Kim T S,Park J H,Kim X Y,Hwan K SH.Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation[J].Science Advances,2022,8(23):3209.

29 Na H,Kang Y W,Park C S,Jung S,Kim H Y,Sun J Y.Hydrogel-based strong and fast actuators by electroosmotic turgor pressure[J].Science,2022,376:301-307.

30 Jiang Z,Song P G.Strong and fast hydrogel actuators[J].Science,2022,376:245.

31 Shang J J,Le X X,Zhang J W,Chen T,Patrick T.Trends in polymeric shape memory hydrogels and hydrogel actuators[J].Polymer Chemistry,2019,10:1036-1055.

32 Pu X,Liu M M,Chen X Y,Sun J M,Du C H,Zhang Y,Zhai J Y,Hu W G,Wang Z L.Ultrastretchable,transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing[J].Science Advances,2017,3(5):e1700015.

33 Schroeder T B H,Guha A,Lamoureux A,Van Renterghem G,Sept D,Shtein M,Yang J,Mayer M.An electric-eelinspired soft power source from stacked hydrogels[J].Nature,2017,552:214-218.

34 Wang H Y,Sun Y L,He T C,Huang Y X,Cheng H H,Li C,Xie D,Yang P F,Zhang Y F,Qu L T.Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1000 V output[J].Nature Nanotechnology,2021,16:811-819.

35 Cangialosi A,Yoon C K,Liu J Y,Huang Q,Guo J K,Nguyen T D,Gracias D H,Schulman R.DNA sequencedirected shape change of photopatterned hydrogels via high-degree swelling[J].Science,2017,357:1126-1130.

36 Liu M J,Ishida Y,Ebina Y,Sasaki T,Hikima T,Takata M,Aida T.An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets[J].Nature,2015,517:68-72.

37 Chin S Y,Poh C,Kohler A,Compton J T,Hsu L L,Lau K M,Kim S,Lee B W,Lee F Y,Sia S K.Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices[J].Science Robotics,2017,2:eaah6451.

38 Kim J W,Hanna J A,Byun M,Santangelo C D,Hayward R C.Designing responsive buckled surfaces by halftone gel lithography[J].Science,2012,335:1201-1205.

39 Zhang S M,Greenfield M A,Mata A,Palmer L C,Bitton R,Mantei J R,Aparicio C,de la Cruz M O,Stupp S I.Aself-assembly pathway to aligned monodomain gels[J].Nature Materials,2010,9:594-601.

40 Li H B,Xiao J P,Fu Q,Bao X H.Confined catalysis under two-dimensional materials[J].Proceedings of the National Academy of Sciences,2017,114(23):5900-5934.

41 Wu Z L,Gong J P.Hydrogels with self-assembling ordered structures and their functions[J].NPG Asia Materials,2011,3:57-64.

42 Ma S H,Yu B,Pei X W,Zhou F.Structural hydrogels[J].Polymer,2016,19(98):516-535.

43 Sano K,Ishida Y,Aida T.Synthesis of anisotropic hydrogels and their applications[J].Angewandte Chemie International Edition,2018,57(10):2532-2543.

44 Le X X,Lu W,Zhang J W,Chen T.Recent progress in biomimetic anisotropic hydrogel actuators[J].Advanced science,2019,6(5):1801584.

45 Mredha M,Jeon I.Biomimetic anisotropic hydrogels:advanced fabrication strategies,extraordinary functionalities,and broad applications[J].Progress in Materials Science,2022,124:100870.

46 Zhang H F,Hussain I,Brust M,Butler M F,Rannard S P,Cooper A I.Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles[J].Nature Materials,2005,4:787-793.

47 Ni J H,Lin S T,Qin Z,Veysset D,Liu X Y,Sun Y C,Hsieh A J,Radovitzky R,Nelson K A,Zhao X H.Strong fatigue-resistant nanofibrous hydrogels inspired by lobster underbelly[J].Matter,2021,4(6):1919-1934.

48 Shahbazi M A,Ghalkhani M,Maleki H.Directional freeze-casting:a bioinspired method to assemble multifunctional aligned porous structures for advanced applications[J].Advanced Engineering Materials,2020,22(7):2000033.

49 Hua M T,Wu S W,Ma Y F,Zhao Y S,Chen Z L,Frenkel I,Strzalka J,Zhou H,Zhu X Y,He X M.Strong tough hydrogels via the synergy of freeze-casting and salting out[J].Nature,2021,590:594-599.

50 Liang X Y,Chen G D,Lei I M,Zhang P,Wang Z Y,Chen X M,Lu M Z,Zhang J J,Wang Z B,Sun T L,Lan Y,Liu J.Impact-resistant hydrogels by harnessing 2D hierarchical structures[J].Advanced Materials,2023,35(1):2207587.

51 Wu J J,Lin Y T,Sun J Z.Anisotropic volume change of poly(N-isopropylacrylamide)-based hydrogels with an aligned dual-network microstructure[J].Materials Chemistry,2012,22:17449.

52 Choi S J,Moon J R,Park N R,Im J,Kim Y E,Kim J H,Kim J Y.Bone-adhesive anisotropic tough hydrogel mimicking tendon enthesis[J].Advanced Materials,2023,35:2206207.

53 Liu C,Morimoto N,Jiang L,Kawahara S,Noritomi T,Yokoyama H,Mayumi K,Ito K.Tough hydrogels with rapid self-reinforcement[J].Science,2021,372:1078-1081.

54 Mredha T I,Guo Y Z,Nonoyama T,Nakajima T,Kurokawa T,Gong J P.A facile method to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures[J].Advanced Materials,2018,30:1704937.

55 Wu Z L,Sawada D,Kurokawa T,Kakugo A,Yang W,Furukawa H,Gong J P.Strain-induced molecular reorientation and birefringence reversion of a robust,anisotropic double-network hydrogel[J].Macromolecules,2011,44 (9):3542-3547.

56 Zheng Y R,Zhang L N,Duan B.Anisotropic chitosan/tunicate cellulose nanocrystals hydrogel with tunable interference color and acid-responsiveness[J].Carbohydrate Polymers,2022,295:119866.

57 Yang Y,Huang H Q,Xu D,Wang X J,Chen Y,Wang X H,Zhang K.3D hollow xerogels with ordered cellulose nanocrystals for tailored mechanical properties[J].Small,2021,17:2104702.

58 Ladet S,David L,Domard A.Multi-membrane hydrogels[J].Nature,2008,452:76-79.

59 Wu Z L,Kurokawa T,Liang S M,Furukawa H,Gong J P.Hydrogels with cylindrically symmetric structure at macroscopic scale by self-assembly of semi-rigid polyion complex[J].Journal of the American Chemical Society,2010,132 (29):10064-10069.

60 Wu Z L,Kurokawa T,Sawada D,Hu J,Furukawa H,Gong J P.Anisotropic hydrogel from complexation-driven reorientation of semirigid polyanion at Ca2+diffusion flux front[J].Macromolecules,2011,44:3535-3541.

61 Wu Z L,Takahashi R,Sawada D,Arifuzzaman,Nakajima T,Kurokawa T,Hu J,Gong J P.In situ observation of Ca2+diffusion-induced superstructure formation of a rigid polyanion[J].Macromolecules,2014,47:7208-7214.

62 Qiao J S,Kong X H,Hu Z X,Yang F,Ji W.High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J].Nature Communiications,2014,5:4475.

63 Zhu Q L,Dai C F,Wagner D,Daab M,Hong W,Breu J,Zheng Q,Wu Z L.Distributed electric field induces orientations of nanosheets to prepare hydrogels with elaborate ordered structures and programmed deformations[J].Advanced Materials,2020,32:2005567.

64 Yan H,Tsujii K.Novel bimorph-structured hydrogel containing segregated polymer surfactant[J].Polymer Journal,2005,37:858-861.

65 Dai C F,Khoruzhenko O,Zhang C Q,Zhu Q L,Jiao D J,Du M,Breu J,Zhao P,Zheng Q,Wu Z L.Magnetoorientation of magnetic double stacks for patterned anisotropic hydrogels with multiple responses and modulable motions[J].Angewandte Chemie International Edition,2022,61:e202207272.

66 Ding B F,Zeng P Y,Huang Z Y,Dai L X,Lan T S,Xu H,Pan Y K,Luo Y T,Yu Q M,Cheng H M,Liu B L.A 2Dmaterial-based transparent hydrogel with engineerable interference colours[J].Nature Communications,2022,13:1212.

67 Kim Y S,Liu M J,Ishida Y,Ebina Y,Osada M,Sasaki T,Hikima T,Takata M,Aida T.Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel[J].Nature Materials,2015,14:1002-1007.

68 Uchida N,Ishida Y.Macroscopically oriented polymeric soft materials:synthesis and functions[J].Polymer Journal,2019,51:709-719.

69 Sano K,Kim Y,Ishida Y,Ebina Y,Sasaki T,Hikima T,Aida T.Photonic water dynamically responsive to external stimuli[J].Nature Communications,2016,7:12559.

70 Wang X,Li Z H,Wang S X,Sano K,Sun Z F,Shao Z H,Takeishi A,Matsubara S,Okumura D,Sakai N,Sasaki T,Aida T,Ishida Y.Mechanical nonreciprocity in a uniform composite material[J].Science,2023,380:192-198.

71 Wang J M,Cheng Q Y,Feng S Y,Zhang L N,Chang C Y.Shear-aligned tunicate-cellulose-nanocrystal-reinforced hydrogels with mechano-thermo-chromic properties[J].Journal of Materials Chemistry C,2021,9:6344-6350.

72 Nasseri R,Bouzari N,Huang,J T,Golzar H,Jankhani S,Tang X W,Mekonnen T H,Aghakhani A,Shahsavan H.Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics[J].Nature Communications,2023,14:6108.

73 Hiratani T,Kose O,Hamad W Y,Mac Lachlan M J.Stable and sensitive stimuli-responsive anisotropic hydrogels for sensing ionic strength and pressure[J].Materials Horizons,2018,5:1076-1081.

74 Gladman A S,Matsumoto E A,Nuzzo R G,Mahadevan L,Lewis J A.Biomimetic 4D printing[J].Nature Materials,2016,15:413-418.

75 Haque A,Kamita G,Kurokawa T,Tsujii K,Gong J P.Unidirectional alignment of lamellar bilayer in hydrogel:one-dimensional swelling,anisotropic modulus,and stress/strain tunable structural color[J].Advanced Materials,2010,22:5110-5114.

76 Holtz J H,Asher S A.Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials[J].Nature,1997,389:829-832.

77 Fu F F,Shang L R,Chen Z Y,Yu Y R,Zhao Y J.Bioinspired living structural color hydrogels[J].Science Robotics,2018,3:eaar8580.

78 Warriner H E,Idziak S H J,Slack N,Davidson P,Safinya C R.Lamellar biogels:fluid-membrane-based hydrogels containing polymer lipids[J].Science,1996,271(5251):969-973.

79 Haque A,Kurokawa T,Kamita G,Gong J P.lamellar bilayers as reversible sacrificial bonds to toughen hydrogel:hysteresis,self-recovery,fatigue resistance,and crack blunting[J].Macromolecules,2011,44:8916-8924.

80 Mito K,Haque A,Nakajima T,Uchiumi M,Kurokawa T,Nonoyama T,Gong J P.Supramolecular hydrogels with multi-cylindrical lamellar bilayers:swelling-induced contraction and anisotropic molecular diffusion[J].Polymer,2017,128:373-378.

81 Haque A,Mito K,Kurokawa T,Nakajima T,Nonoyama T,Ilyas M,Gong J P.Tough and variable-band-gap photonic hydrogel displaying programmable angle-dependent colors[J].ACS Omega,2018,3(1):55-62.

82 Yue Y F,Kurokawa T,Haque A,Nakajima T,Nonoyama T,Li X F,Kajiwara I,Gong J P.Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels[J].Nature Communications,2014,5:4659.

83 Yue Y F,Haque A,Kurokawa T,Nakajima T,Cong J P.Lamellar hydrogels with high toughness and ternary tunable photonic stop-band[J].Advanced Materials,2013,25:3106-3110.

84 Haque A,Kurokawa T,Kamita G,Yue Y F,Cong J P.Rapid and reversible tuning of structural color of a hydrogel over the entire visible spectrum by mechanical stimulation[J].Chemistry of Materials,2011,23(23):5200-5207.

85 Chen S M,Wu K J,Gao H L,Sun X H,Zhang S C,Li X Y,Zhang Z B,Wen S M,Zhu Y B,Wu H A,Ni Y,Yu SH.Biomimetic discontinuous Bouligand structural design enables high-performance nanocomposites[J].Matter,2022,5:1563-1577.

86 Tanner K E.Small but extremely tough[J].Science,2012,336:1237-1238.

87 Weaver J C,Milliron G W,Miserez A,Evans-Lutterodt K,Herrera S,Gallana I,Mershon W J,Swanson B,Zavattieri P,Di Masi E,Kisailus D.The stomatopod dactyl club:a formidable damage-tolerant biological hammer[J].Science,2012,336:1275-1280.

88 Tadepalli S,Slocik J M,Gupta M K,Naik R R,Singamaneni S.Bio-optics and bio-inspired optical materials[J].Chemical Reviews,2017,117(20):12705-12763.

89 Suksangpanya N,Yaraghi N A,Kisailus D,Zavattieri P.Twisting cracks in Bouligand structures[J].Journal of the Mechanical Behavior of Biomedical Materials,2017,76:38-57.

90 Saha P,Davis V A.Photonic properties and applications of cellulose nanocrystal films with planar anchoring[J].ACS Applied Nano Materials,2018,1(5):2175-2183.

91 Spengler M,Dong R Y,Michal C A,Mac Lachlan M J.Hydrogen-bonded liquid crystals in confined spacestoward photonic hybrid materials[J].Advanced Functional Materials,2018,28 (26):1800207.

92 Babaei-Ghazvini,Amin,and Bishnu Acharya.Mechanical responsive visible structural colors based on chiralnematic cellulose nanocrystals photonic hydrogels[J].Chemical Engineering Journal,2023,476:146585.

93 Dogic Z,Fraden S.Cholesteric phase in virus suspensions[J].Langmuir,2000,16(20):7820-7824.

94 Revol J F,Godbout L,Dong X M,Gray D G,Chanzy H,Maret G.Chiral nematic suspensions of cellulose crystallites;phase separation and magnetic field orientation[J].Liquid Crystals,1994,16(1):127-134.

95 Revol J F,Marchessault R H.In vitro chiral nematic ordering of chitin crystallites[J].International Journal of Biological Macromolecules,1993,15:329-335.

96 Bagnani M,Nystr?m M,de Michele C,Mezzenga R.Amyloid fibrils length controls shape and structure of nematic and cholesteric tactoids[J].ACS Nano,2019,13(1):591-600.

97 Pei X D,Zan T T,Li H M,Chen Y J,Shi L Q,Zhang Z K.Pure anisotropic hydrogel with an inherent chiral internal structure based on the chiral nematic liquid crystal phase of rodlike viruses[J].ACS Macro Letters,2015,4(11):1215-1219.

98 Wang Y H,Zheng X N,Zhong W T,Ye Z H,Wang X Z,Dong Z Y,Zhang Z K.Multicomponent chiral hydrogel fibers with block configurations based on the chiral liquid crystals of cellulose nanocrystals and M13bacteriophages[J].Polymer Chemistry,2022,13(36):5200-5211.

99 Kelly J A,Shukaliak A M,Cheung C C Y,Shopsowitz K E,Maclachlan M J.Responsive photonic hydrogels based on nanocrystalline cellulose[J].Angewandte Chemie International Edition,2013,52:8912-8916.

100 Cao Y Y,Wang P X,D'Acierno F,Hamad W Y,Michal C A,Maclachlan M J.Tunable diffraction gratings from biosourced lyotropic liquid crystals[J].Advanced Materials,2020,32(19):e1907376.

101 Nguyen T D,Peres B U,Carvalho R M,Maclachlan M J.Photonic hydrogels from chiral nematic mesoporous chitosan nanofibril assemblies[J].Advanced Functional Materials,2016,26:2875-2881.

102 Lee K T,Asher S A.Photonic crystal chemical sensors:p H and ionic strength[J].Journal of the American Chemical Society,2000,122(39):9534-9537.

103 Haque A,Kurokawa T,Gong J P.Anisotropic hydrogel based on bilayers:color,strength,toughness,and fatigue resistance[J].Soft Matter,2012,8:8008-8016.

104 Yue Y F,Kurokawa T,Haque A,Nakajima T,Nonoyama T,Li X F,Kajiwara I,Gong J P.Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels[J].Nature Communications,2014,5(1):4659.

105 Xia L W,Xie R,Ju X J,Wang W,Chen Q M,Chu L Y.Nano-structured smart hydrogels with rapid response and high elasticity[J].Nature Communications,2013,4(1):2226.

106 Wu Z L,Moshe M,Greener J,Therien-Aubin H,Nie Z H,Sharon E,Kumacheva E.Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses[J].Nature Communications,2013,4:1586.

107 Palleau E,Morales D,Dickey M D,Velev O D.Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting[J].Nature Communications,2013,4:2257.

108 Yuk H W,Lin S T,Ma C,Takaffoli M,Fang N X,Zhao X H.Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water[J].Nature Communications,2017,8:14230.

109 Abalymov A,Pinchasik B E,Akasov R A,Lomova M,Parakhonskiy B V.Strategies for anisotropic fibrillar hydrogels:design,cell alignment,and applications in tissue engineering[J].Biomacromolecules,2023,24(11):4532-4552.

110 Wang Q,Zhang Q,Wang G Y,Wang Y R,Ren X Y,Gao G H.Muscle-inspired anisotropic hydrogel strain sensors[J].ACS Applied Materials&Interfaces,2022,14(1):1921-1928.

基本信息:

DOI:10.16026/j.cnki.iea.2024050376

中图分类号:TQ427.26

引用信息:

[1]钟伟婷,吕菲,张珍坤.结构化水凝胶的构建及其应用[J].离子交换与吸附,2024,40(05):376-393.DOI:10.16026/j.cnki.iea.2024050376.

基金信息:

国家自然科学基金面上项目(基金号21774064)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文